490 research outputs found

    Hydrophilic nanoparticles stabilising mesophase curvature at low concentration but disrupting mesophase order at higher concentrations

    Get PDF
    Silica nanoparticles form aggregates at mesophase domain boundaries, which may suppress or promote curvatures depending on the nanoparticle concentration.</p

    Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits

    Get PDF
    Lithium-ion batteries are being used in increasingly demanding applications where safety and reliability are of utmost importance. Thermal runaway presents the greatest safety hazard, and needs to be fully understood in order to progress towards safer cell and battery designs. Here, we demonstrate the application of an internal short circuiting device for controlled, on-demand, initiation of thermal runaway. Through its use, the location and timing of thermal runaway initiation is pre-determined, allowing analysis of the nucleation and propagation of failure within 18 650 cells through the use of high-speed X-ray imaging at 2000 frames per second. The cause of unfavourable occurrences such as sidewall rupture, cell bursting, and cell-to-cell propagation within modules is elucidated, and steps towards improved safety of 18 650 cells and batteries are discussed

    Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance

    Get PDF
    Fast discharge capability of automotive batteries not only affects the acceleration and climbing performance of electric vehicles, but also the accessible driving range under complex driving cycles. Understanding the intricate physical and chemical processes across multiple length-scales is critical to assist the strategic design of electrodes for improved rate performance. Here, we correlate the discharge rate performance of Ni-rich LiNi1−x−yCoxMnyO2 (NMC) cathodes to the electrode architectures, ranging from the crystallographic orientations, surface morphology and cracks at single particle level, to the factors that affect the dominance of the solid and liquid-state transport (SST and LST) at electrode level. A random orientation of the primary particles is found to incur an increase of the SST resistance by a factor of 2.35 at 5C and a heterogeneous intra-particle lithiation. Internal cracks significantly restrict the accessibility to the active material. Double-layered particles are proved to be a more promising candidate than single-crystal particles. At electrode level, the SST-dominance depth is quantified for the first time to guide the microstructural tuning and rational operating windows are proposed for electrodes of various architectures. The reaction front is observed to shuttle across the electrode depth to mitigate the polarization, which can provide valuable insights into the battery management development. Finally, by comparing the performance of single crystal and polycrystalline NMC811 electrodes, it is suggested that electrode thickness and porosity are more critical in the former for enhanced discharge rate performance, in contrast to polycrystalline electrodes, in which a gradient particle fraction and size distribution are recommended

    Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography

    Get PDF
    This study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.33O2 electrodes cycled to 4.2 and 4.7 V in full cells with graphite as negative electrodes at 1 μm spatial resolution to determine the change in unit cell dimensions as a result of electrochemical cycling. The nature of the technique permits the spatial localization of the diffraction information in 3D and mapping of heterogeneities from the electrode to the particle level. An overall decrease of 0.4% and 0.6% was observed for the unit cell volume after 100 cycles for the electrodes cycled to 4.2 and 4.7 V. Additionally, focused ion beam-scanning electron microscope cross-sections indicate extensive particle cracking as a function of upper cut-off voltage, further confirming that severe cycling stresses exacerbate degradation. Finally, the technique facilitates the detection of parts of the electrode that have inhomogeneous lattice parameters that deviate from the bulk of the sample, further highlighting the effectiveness of the technique as a diagnostic tool, bridging the gap between crystal structure and electrochemical performance

    SUPPORT OF ORGANIC FOOD PRODUCTION BY ANALYTICAL AUTHENTICATION TOOLS

    Get PDF
    This paper was presented at the "Organic Farming Symposium, Amman, Jordan"

    Observation of the decay B^0->D+D*-

    Full text link
    We report the first observation of the decay B^0->D+-D*-+ with the Belle detector at the KEKB e^+e^- collider operated at the Upsilon(4S) resonance. The sum of branching fractions B(B^0->D+D*-)+B(B^0->D-D*+) is measured to be (1.17+-0.26+0.22-0.25)x10^-3 using the full reconstruction method where both charmed mesons from B^0 decays are reconstructed. A consistent value ((1.48+-0.38+0.28-0.31)x10^-3) is obtained using a partial reconstruction technique that only uses the slow pion from the D*- ->bar D^0pi- decay and a fully reconstructed D+ to reconstruct the B^0.Comment: 10 pages, 3 figure

    Observation of the eta_c(2S) in exclusive B-->K KsK-pi+ decays

    Full text link
    We report the observation of a narrow peak in the KsK-pi+ invariant mass distribution in a sample of exclusive B-->K KsK-pi+ decays collected with the Belle detector at the KEKB asymmetric energy e+e- collider. The measured mass of the peak is M=3654+-6(stat)+-8(syst) MeV/c^2 and we place a 90% confidence level upper limit on the width of Gamma<55 MeV/c^2. The properties agree with heavy-quark potential model expectations for the eta_c(2S), the n=2 singlet S charmonium state.Comment: 10 pages, 3 figures, submitted to Physical Review Letter

    Observation of Large CP Violation in the Neutral B Meson System

    Full text link
    We present a measurement of the Standard Model CP violation parameter sin 2phi_1 based on a 29.1 fb^{-1} data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. One neutral B meson is fully reconstructed as a J/psi Ks, psi(2S) Ks, chi_c1 Ks, eta_c Ks, J/psi K_L or J/psi K^{*0} decay and the flavor of the accompanying B meson is identified from its decay products. From the asymmetry in the distribution of the time intervals between the two B meson decay points, we determine sin 2phi_1 = 0.99 +- 0.14(stat) +- 0.06(syst). We conclude that we have observed CP violation in the neutral B meson system.Comment: 4 figures, to appear in Phys. Rev. Letter
    corecore