5 research outputs found

    Highly Stretchable Strain Sensor and Detecting System for Monitoring of Bladder Volume

    No full text
    This paper demonstrates a highly stretchable strain sensor fabricated using biocompatible materials for bladder monitoring application. We fabricate Ecoflex-CNT strain sensors, and additionally formed AuCNT composite on the CNT film to increase stretchability as well as sensitivity. Furthermore, the monitoring system for the device using Arduino is developed. Our result shows that the device operates well within 200 % strain range, and allows to monitor the change with the monitoring system. © 2021 IEEE

    Physiological and Shoot Growth Responses of <i>Abies holophylla</i> and <i>Abies koreana</i> Seedlings to Open-Field Experimental Warming and Increased Precipitation

    No full text
    Projected changes in temperature and precipitation in mid-latitude wet regions are expected to significantly affect forest ecosystems. We studied the physiological and shoot growth responses of Abies holophylla and Abies koreana seedlings to warming (3 °C above ambient temperature) and increased precipitation (irrigation with 40% of rainfall) treatments under open-field conditions. The physiological parameters, quantified by the net photosynthetic rate, transpiration rate, stomatal conductance, and total chlorophyll content, were monitored from July to October 2018. Shoot growth (i.e., root collar diameter and height) was assessed in August and December 2018. Irrespective of the treatments, the physiological parameters of both species decreased from July to August under warming treatment due to heat stress before recovering in September and October. Warming alone (W) and warming along with increased precipitation (W*P) decreased the physiological activities of both species in July, August, and September, with more pronounced effects on A. koreana compared with A. holophylla. Increased precipitation resulted in the increased chlorophyll content of both species in October. Shoot growth was not generally affected by the treatments, except for a subtle reduction in height under W*P for A. koreana. A. holophylla had consistently higher values for the physiological parameters and shoot growth than A. koreana. Our results indicate that the physiological activities of the Abies species could be seriously reduced under climate change, with a more severe impact on A. koreana. Among the two species, A. holophylla appears to be a more robust candidate for future forest planting

    Species specific physiological responses of Pinus densiflora and Larix kaempferi seedlings to open-field experimental warming and precipitation manipulation

    No full text
    Physiological responses of 1-year-old Pinus densiflora and Larix kaempferi seedlings were measured under open-field warming and precipitation manipulation. Air temperature of warming plots was 3 °C higher, while precipitation manipulation plots received ±40% of the precipitation than control plots. Seedlings were planted in May, and temperature and precipitation were manipulated from June 2017. Total chlorophyll content (Chlt), net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (gs) were measured between July and September 2017. For P. densiflora and L. kaempferi, Chlt increased by 11.75% and 11.64%, and Pn decreased by 9.14% and 2.17% under warming, respectively. E and gs were lower under warming in P. densiflora, but higher in L. kaempferi. The lower Pn in P. densiflora resulted from stomatal closure, while that of L. kaempferi resulted from reduced vitality. Lower precipitation increased Chlt and Pn by 11.64% and 2.66% for P. densiflora, and by 6.40% and 4.32% for L. kaempferi, respectively. Conversely, higher precipitation decreased Pn of P. densiflora by 5.72%, and decreased Chlt and Pn of L. kaempferi by 8.24% and 4.55%, respectively. These results can be attributed to concentrated precipitation. In this study, two species responded differently even when they were exposed to the same environmental conditions, and this was due to the species-specific mechanisms to water stress derived from the high temperature

    Effects of Spring Warming and Drought Events on the Autumn Growth of Larix kaempferi Seedlings

    No full text
    High temperatures and droughts following winter dormancy can negatively affect seedling growth and mortality. An open-field experiment was conducted to study the growth and mortality of Larix kaempferi seedlings in response to spring warming and drought treatments and to determine whether seedlings could regain their growth capability once the treatments were discontinued. In May 2020, 1-year-old seedlings were exposed to four treatments: control, warming-only, drought-only, and the combined warming and drought. Drought treatment reduced the seedling height and root collar diameter and increased the mortality rate. The combined warming and drought treatments had the highest mortality rates, followed by the drought, control, and warming treatments. However, after the cessation of the treatments, the combined warming and drought treatments increased seedling height, root collar diameter, and individual seedling biomass because the high mortality rate relaxed competition among seedlings. This suggests that the effects of low competition on the surviving seedlings may mitigate the negative effects of warming and drought on seedling growth. Our study demonstrates that despite the high mortality and decreased growth during the treatment period, seedlings subjected to combined high temperature and drought stress showed short-term high levels of growth compared to seedlings subjected to a single stress
    corecore