2 research outputs found

    A highly sensitive and selective impedimetric aptasensor for interleukin-17 receptor A

    No full text
    Interleukin-17 receptor A (IL-17RA) has been recognized as a valuable biomarker for diverse diseases, including autoimmune diseases. In this work, an electrochemical biosensor with great sensitivity and selectivity toward IL-17RA was fabricated using an IL-17RA aptamer (K-d = 14.00 nM) for the first time. The aptasensor was manufactured using electrodeposition of gold nanoparticles, and then quantitative detection of IL-17RA was performed based on impedimetry. The developed sensor exhibited a superior analytical performance for IL-17RA with a wide dynamic range of 10-10,000 pg/mL in buffer and a detection limit of 2.13 pg/mL, which is lower than that of commercially available ELISA kits. In addition, we validated the high specificity of the designed aptasensor to only IL-17RA, which showed good sensitivity even in human serum solution. Furthermore, the detection of the differentiated HL-60 cells expressing 1L-17RA was successfully performed. Clinical applicability of the sensor was also demonstrated utilizing neutrophils separated from asthma patients. It is expected that the fabricated aptasensor will become an excellent diagnostic platform for IL-17RA-mediated diseases. (C) 2016 Elsevier B.V. All rights reserved.1166sciescopu

    Effectiveness of COVID-19 vaccines against severe outcomes in cancer patients: Real-world evidence from self-controlled risk interval and retrospective cohort studies

    No full text
    Background: The effectiveness of COVID-19 vaccines is generally reduced in cancer patients compared to the general population. However, there are only a few studies that compare the relative risk of breakthrough infections and severe COVID-19 outcomes in fully vaccinated cancer patients versus their unvaccinated counterparts. Methods: To assess the effectiveness of COVID-19 vaccines in cancer patients, we employed (1) a self-controlled risk interval (SCRI) design, and (2) a retrospective matched cohort design. A SCRI design was used to compare the risk of breakthrough infection in vaccinated cancer patients during the period immediately following vaccination (“control window”) and the period in which immunity is achieved (“exposure windows”). The retrospective matched cohort design was used to compare the risk of severe COVID-19 outcomes between vaccinated and unvaccinated cancer patients. For both studies, data were extracted from the Korea Disease Control and Prevention Agency-COVID-19-National Health Insurance Service cohort, including demographics, medical history, and vaccination records of all individuals confirmed with COVID-19. We used conditional Poisson regression to calculate the incidence rate ratio (IRR) for breakthrough infection and Cox regression to estimate the hazard ratio (HR) for severe outcomes. Results: Of 14,448 cancer patients diagnosed with COVID-19 between October 2020 and December 2021, a total of 217 and 3996 cancer patients were included in the SCRI and cohort study respectively. While the risk of breakthrough infections, measured by the incidence rate in the control and exposure windows, did not show statistically significant difference in vaccinated cancer patients (IRR=0.88, 95% CI: 0.64–1.22), the risk of severe COVID-19 outcomes was significantly lower in vaccinated cancer patients compared to those unvaccinated (HR=0.27, 95% CI: 0.22–0.34). Conclusion: COVID-19 vaccines significantly reduce the risk of severe outcomes in cancer patients, though their efficacy against breakthrough infections is less evident
    corecore