6 research outputs found

    Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice

    No full text
    Obesity develops due to an energy imbalance and manifests as the storage of excess triglyceride (TG) in white adipose tissue (WAT). Recent studies have determined that edible natural materials can reduce lipid accumulation and promote browning in WAT. We aimed to determine whether Ecklonia stolonifera extract (ESE) would increase the energy expenditure in high-fat diet (HFD)-induced obese mice and 3T3-L1 cells by upregulating lipolysis and browning. ESE is an edible brown marine alga that belongs to the family Laminariaceae and contains dieckol, a phlorotannin. We report that ESE inhibits body mass gain by regulating the expression of proteins involved in adipogenesis and lipogenesis. In addition, ESE activates protein kinase A (PKA) and increases the expression of lipolytic enzymes including adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and monoacylglycerol lipase (MGL) and also thermogenic genes, such as carnitine palmitoyltransferase 1 (CPT1), PR domain-containing 16 (PRDM16), and uncoupling protein 1 (UCP1). These findings indicate that ESE may represent a promising natural means of preventing obesity and obesity-related metabolic diseases

    Silk Peptide Ameliorates Sarcopenia through the Regulation of Akt/mTOR/FoxO3a Signaling Pathways and the Inhibition of Low-Grade Chronic Inflammation in Aged Mice

    No full text
    As populations around the world age, interest in healthy aging is growing. One of the first physical changes that occurs with aging is the loss of muscle mass and strength, termed sarcopenia. Sarcopenia limits the activity of older people, reduces their quality of life, and increases the likelihood of their developing disease. In the present study, we aimed to evaluate the effects of the ingestion of acid-hydrolyzed silk peptide (SP) on the muscle mass and strength of mice of >22 months of age with naturally occurring sarcopenia, and to identify the mechanisms involved. The daily administration of SP for 8 weeks increased the activation of the Akt/mTOR/FoxO3a signaling pathways and increased the muscle mass and strength of the old mice. In addition, SP inhibited oxidative stress and inflammation in muscle, which are direct causes of sarcopenia. Therefore, SP represents a promising potential treatment for sarcopenia that may improve the healthy lifespan and quality of life of older people

    A Combined Angelica gigas and Artemisia dracunculus Extract Prevents Dexamethasone-Induced Muscle Atrophy in Mice through the Akt/mTOR/FoxO3a Signaling Pathway

    No full text
    Since skeletal muscle atrophy resulting from various causes accelerates the progression of several diseases, its prevention should help maintain health and quality of life. A range of natural materials have been investigated for their potential preventive effects against muscle atrophy. Here, ethanol extracts of Angelica gigas and Artemisia dracunculus were concentrated and dried, and mixed at a ratio of 7:3 to create the mixture CHDT. We then evaluated the potential for CHDT to prevent muscle atrophy and explored the mechanisms involved. CHDT was orally administered to C57BL/6 mice daily for 30 days, and dexamethasone (Dex) was intraperitoneally injected daily to induce muscle atrophy from 14 days after the start of oral administration. We found that CHDT prevented the Dex-induced reductions in muscle strength, mass, and fiber size, likely by upregulating the Akt/mTOR signaling pathway. In addition, CHDT reduced the Dex-induced increase in the serum concentrations of pro-inflammatory cytokines, which directly induce the degradation of muscle proteins. These findings suggest that CHDT could serve as a natural food supplement for the prevention of muscle atrophy

    Gomisin N from Schisandra chinensis Ameliorates Lipid Accumulation and Induces a Brown Fat-Like Phenotype through AMP-Activated Protein Kinase in 3T3-L1 Adipocytes

    No full text
    Obesity results from an imbalance between energy intake and energy expenditure, in which excess fat is stored as triglycerides (TGs) in white adipocytes. Recent studies have explored the anti-obesity effects of certain edible phytochemicals, which suppress TG accumulation and stimulate a brown adipocyte-like phenotype in white adipocytes. Gomisin N (GN) is an important bioactive component of Schisandra chinensis, a woody plant endemic to Asia. GN has antioxidant, anti-inflammatory and hepatoprotective effects in vivo and in vitro. However, the anti-obesity effects of GN in lipid metabolism and adipocyte browning have not yet been investigated. In the present study, we aimed to determine whether GN suppresses lipid accumulation and regulates energy metabolism, potentially via AMP-activated protein kinase (AMPK), in 3T3-L1 adipocytes. Our findings demonstrate that GN inhibited adipogenesis and lipogenesis in adipocyte differentiation. Also, GN not only increased the expression of thermogenic factors, including uncoupling protein 1 (UCP1), but also enhanced fatty acid oxidation (FAO) in 3T3-L1 cells. Therefore, GN may have a therapeutic benefit as a promising natural agent to combat obesity

    The Gintonin-Enriched Fraction of Ginseng Regulates Lipid Metabolism and Browning via the cAMP-Protein Kinase a Signaling Pathway in Mice White Adipocytes

    No full text
    Obesity is a major health concern and is becoming an increasingly serious societal problem worldwide. The browning of white adipocytes has received considerable attention because of its potential protective effect against obesity-related metabolic disease. The gintonin-enriched fraction (GEF) is a non-saponin, glycolipoprotein component of ginseng that is known to have neuroprotective and anti-inflammatory effects. However, the anti-obesity and browning effects of GEF have not been explored to date. Therefore, we aimed to determine whether GEF has a preventive effect against obesity. We differentiated 3T3-L1 cells and mouse primary subcutaneous adipocytes for 8 days in the presence or absence of GEF, and then measured the expression of intermediates in signaling pathways that regulate triglyceride (TG) synthesis and browning by Western blotting and immunofluorescence analysis. We found that GEF reduced lipid accumulation by reducing the expression of pro-adipogenic and lipogenic factors, and increased lipolysis and thermogenesis, which may be mediated by an increase in the phosphorylation of protein kinase A. These findings suggest that GEF may induce fat metabolism and energy expenditure in white adipocytes and therefore may represent a potential treatment for obesity

    In-Depth Understanding of <i>Ecklonia stolonifera</i> Okamura: A Review of Its Bioactivities and Bioactive Compounds

    No full text
    Ecklonia stolonifera Okamura (ES) is mainly distributed in the coastal areas of the middle Pacific, around Korea and Japan, and has a long-standing edible value. It is rich in various compounds, such as polysaccharides, fatty acids, alginic acid, fucoxanthin, and phlorotannins, among which the polyphenol compound phlorotannins are the main active ingredients. Studies have shown that the extracts and active components of ES exhibit anti-cancer, antioxidant, anti-obesity, anti-diabetic, antibacterial, cardioprotective, immunomodulatory, and other pharmacological properties in vivo and in vitro. Although ES contains a variety of bioactive compounds, it is not widely known and has not been extensively studied. Based on its potential health benefits, it is expected to play an important role in improving the nutritional value of food both economically and medically. Therefore, ES needs to be better understood and developed so that it can be utilized in the development and application of marine medicines, functional foods, bioactive substances, and in many other fields. This review provides a comprehensive overview of the bioactivities and bioactive compounds of ES to promote in-depth research and a reference for the comprehensive utilization of ES in the future
    corecore