67 research outputs found

    17β-Estradiol strongly inhibits azoxymethane/dextran sulfate sodium-induced colorectal cancer development in Nrf2 knockout male mice

    Get PDF
    © 2020 The Author(s)Nuclear factor erythroid 2-related factor 2 (Nrf2) has dual effects on inflammation and cancer progression depending on the microenvironment. Estrogens have a protective effect on colorectal cancer (CRC) development. The aim of this study was to investigate CRC development in Nrf2 knockout (KO) mice. Azoxymethane (AOM) and dextran sulfate sodium (DSS)-treated wild-type (WT) and Nrf2 KO male mice were sacrificed at weeks 2 and 16 after AOM injection with/without 17β-estradiol (E2) treatment during week 1. Disease activity index and colon tissue damage at week 2 showed strong attenuation following E2 administration in WT mice but to a lesser extent in Nrf2 KO male mice. At week 16, E2 significantly diminished AOM/DSS-induced adenoma/cancer incidence at distal colon in the Nrf2 KO group, but not in the WT. Furthermore, mRNA or protein levels of NF-κB-related mediators (i.e., iNOS, TNF-α, and IL-1β) and Nrf2-related antioxidants (i.e., NQO1 and HO-1) were significantly lower in the Nrf2 KO group regardless of E2 treatment compared to the WT. The expression of estrogen receptor beta (ERβ) was higher in the Nrf2 KO group than in the WT. In conclusion, estrogen further inhibits CRC by upregulating ERβ-related alternate pathways in the absence of Nrf2.

    Changes in Microbial Community Composition Related to Sex and Colon Cancer by Nrf2 Knockout

    Get PDF
    The frequency of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in male mice is higher than that in female mice. Previous studies have reported that 17β-estradiol inhibits tumorigenesis in males by modulating nuclear factor-erythroid 2-related factor 2 (Nrf2). This study aimed to investigate the changes in mouse gut microbiome composition based on sex, AOM/DSS-induced colorectal cancer (CRC), and Nrf2 genotype. The gut microbiome composition was determined by 16S rRNA gene sequencing fecal samples obtained at week 16 post-AOM administration. In terms of sex differences, our results showed that the wild-type (WT) male control mice had higher alpha diversity (i.e. Chao1, Shannon, and Simpson) than the WT female control mice. The linear discriminant analysis effect size (LEfSe) results revealed that the abundances of Akkermansia muciniphila and Lactobacillus murinus were higher in WT male control mice than in WT female controls. In terms of colon tumorigenesis, the alpha diversity of the male CRC group was lower than that of the male controls in both WT and Nrf2 KO, but did not show such changes in females. Furthermore, the abundance of A. muciniphila was higher in male CRC groups than in male controls in both WT and Nrf2 KO. The abundance of Bacteroides vulgatus was higher in WT CRC groups than in WT controls in both males and females. However, the abundance of L. murinus was lower in WT female CRC and Nrf2 KO male CRC groups than in its controls. The abundance of A. muciniphila was not altered by Nrf2 KO. In contrast, the abundances of L. murinus and B. vulgatus were changed differently by Nrf2 KO depending on sex and CRC. Interestingly, L. murinus showed negative correlation with tumor numbers in the whole colon. In addition, B. vulgatus showed positive correlation with inflammatory markers (i.e. myeloperoxidase and IL-1β levels), tumor numbers, and high-grade adenoma, especially, developed mucosal and submucosal invasive adenocarcinoma at the distal part of the colon. In conclusion, Nrf2 differentially alters the gut microbiota composition depending on sex and CRC induction

    Association between tobacco industry advertising expenses and tobacco advertising exposure among Korean adolescents

    No full text
    Introduction Monitoring the activities and impacts of tobacco industries is vital for tobacco control. Based on tobacco industry financial statements and a nationally representative survey of Korean adolescents, we examined the association between tobacco industry commercial advertising expenses and advertising exposure among Korean adolescents.Methods The commercial advertising expenses of three major tobacco industries in Korea (KT&G, Philip Morris Korea, and British and American Tobacco Korea) were identified in a repository (Data Analysis Retrieval and Transfer System) established by the Korean Financial Supervisory Service. The yearly advertising expenses were merged with data from the Korean Youth Risk Behavior Survey (2015–2018 and 2021, total N=309 190). We used logistic regression analyses to analyse the associations between tobacco industry advertising expenses and adolescent tobacco advertisement exposure.Results In 2021, the total advertising expenses of the three companies exceeded US$260 million, and the proportion of Korean adolescents exposed to tobacco advertisements ranged from 65.9% to 78.7% during 2015–2018 and 2021. Higher advertising expense sizes were associated with the risk of exposure to tobacco advertisements in both girls and boys, with OR of 1.009 (95% CI (1): 1.008 to 1.010) and 1.010 (95% CI: 1.009 to 1.011), respectively.Conclusion Tobacco industry advertising expenses are associated with tobacco marketing exposure among adolescents. We used financial data to identify the reach of tobacco advertising among Korean adolescents. It is essential to increase tobacco industry surveillance using various data sources and to regulate tobacco advertising more strongly

    Influence of location-dependent sex difference on PD-L1, MMR/MSI, and EGFR in colorectal carcinogenesis.

    No full text
    BackgroundThe incidence and mortality rates of colorectal cancer (CRC) has been reported to be strongly associated to sex/gender difference. CRC shows sexual dimorphism, and sex hormones have been shown to affect the tumor immune microenvironment. This study aimed to investigate location-dependent sex differences in tumorigenic molecular characteristics in patients with colorectal tumors, including adenoma and CRC.MethodsA total of 231 participants, including 138 patients with CRC, 55 patients with colorectal adenoma, and 38 healthy controls, were recruited between 2015 and 2021 at Seoul National University Bundang Hospital. All patients underwent colonoscopy and acquired tumor lesion samples were further analyzed for programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) expression, deficient mismatch repair (dMMR), and microsatellite instability (MSI) status. This study was registered with ClinicalTrial.gov, number NCT05638542.ResultsThe average of combined positive score (CPS) was higher in serrated lesions and polyps (lesions/polyps) compared to conventional adenomas (5.73 and 1.41, respectively, P ConclusionSex and tumor location influenced molecular features such as PD-L1, MMR/MSI status and EGFR expression in CRC, suggesting a possible underlying mechanism of sex-specific colorectal carcinogenesis

    Decreased expression of calretinin in the cerebral cortex and hippocampus of SOD1G93A transgenic mice

    No full text
    In the present study, we investigated the changes of calretinin (CR) expression in the central nervous system of SOD1G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis (ALS). In wild-type SOD1 (wtSOD1) transgenic mice, many CR-immunoreactive neurons were found in all cortical regions. In the cerebral cortex of SOD1G93A transgenic mice, the number and staining intensity of CR-positive neurons were decreased. In the hippocampal formation, layer-specific alterations in the staining intensity of CR-immunoreactive neurons were observed in the CA1-3 areas and dentate gyrus. In wtSOD1 transgenic mice, CR-immunoreactive neurons with long processes were found in the stratum oriens and stratum radiatum of CA1-3 areas, and heavily stained band-like molecular layer was prominent in the dentate gyrus. CR immunoreactivity was decreased in each layer of CA1-3 areas and dentate gyrus of SOD1G93A transgenic mice. The first demonstration of decreased immunoreactivity for CR in the cerebral cortex and hippocampus of SOD1G93A transgenic mice may provide insights into the pathogenesis of motor neuron degeneration in human ALS although further quantitative studies are needed

    Immunohistochemical study on the distribution of the voltage-gated potassium channels in the gerbil cerebellum

    No full text
    Although there have been many studies on the regional distribution of Kv channels in the rat and mouse cerebellum, there are no reports about Kv channel distribution in the gerbil, which is used as an ischemia animal model. Therefore, we aimed to investigate differences in the spatial patterning of Kv channel alpha-subunit isoforms in the gerbil cerebellum. The greatest concentration of Kv1.2 was found in the basket cell axon plexus and terminal regions around the Purkinje cells. Kv1.1 immunoreactivity was also concentrated in this area although the staining intensity was relatively lower. Both Purkinje cell layer and granular layer were intensely stained with anti-Kv1.3 and Kv1.6 antibodies, whereas immunoreactivities for Kv1.4 and Kv1.5 were detected in the Purkinje cell bodies with much lower intensity in the molecular and granular layers. In the cerebellar nuclei, the cell bodies of cerebellar output neurons showed strong immunoreactivities for Kv1.2, Kv1.4, and Kv1.6 with moderate staining for Kv1.3 and Kv1.5 in the cell bodies. This study on the differential localization patterns of Kv1 channel subunits in the gerbil cerebellum may provide helpful guidelines for correlating current types with particular channels and useful data for the future investigations on the pathological conditions such as ischemia and epilepsy
    corecore