2,340 research outputs found

    Auer rod-like crystal inclusions in plasma cells of multiple myeloma

    Get PDF

    Sargassum fulvellum

    Get PDF
    Ultraviolet (UV) radiation has been reported to induce cutaneous inflammation such as erythema and edema via induction of proinflammatory enzymes and mediators. Sargassum fulvellum is a brown alga of Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antioxidant, antitumor, fibrinolytic, and hepatoprotective activities. The purpose of this study is to investigate anti-inflammatory effects of ethylacetate fraction of ethanol extract of Sargassum fulvellum (SFE-EtOAc) in HaCaT keratinocytes and BALB/c mice. In HaCaT cells, SFE-EtOAc effectively inhibited UVB-induced cytotoxicity (60ā€‰mJ/cm2) and the expression of proinflammatory proteins such as cyclooxygenase-2 (COX-2), tumor necrosis factor-Ī± (TNF-Ī±), and inducible nitric oxide synthase (iNOS). Furthermore, SFE-EtOAc significantly reduced UVB-induced production of proinflammatory mediators including prostaglandin E2 (PGE2) and nitric oxide (NO). In BALB/c mice, topical application of SFE-EtOAc prior to UVB irradiation (200ā€‰mJ/cm2) effectively suppressed the UVB-induced protein expression of COX-2, iNOS, and TNF-Ī± and subsequently attenuated generation of PGE2 and NO as well. In another experiment, SFE-EtOAc pretreatment suppressed UVB-induced reactive oxygen species production and exhibited an antioxidant potential by upregulation of antioxidant enzymes such as catalase and Cu/Zn-superoxide dismutase in HaCaT cells. These results suggest that SFE-EtOAc could be an effective anti-inflammatory agent protecting against UVB irradiation-induced skin damages

    A Study on Brightness Improvement and Deterioration of ZnS:Cu Electroluminescence

    Full text link

    Simulation of solute transport in 3d porous media using random walk particle tracking method

    Get PDF
    Random walk particle tracking (RWPT) method provides a computationally effective way to characterize solute transport process in porous media. In this work, an object-oriented scientiļ¬c software platform OpenGeoSys (OGS) was adopted for the simulation and visualization of the complex behavior of particles. Finite element method is used for the calculation of the velocity ļ¬eld which is necessary for the determination of the displacement of the particles through space. The RWPT method has been used in the simulation of the hydraulic process, diffusion and dispersion as it is proved to be well suitedfor such studies. In this work, efforts were taken to search for the solutionto simulate the retardation and decay processe in order to investigate the effects that appear in the contaminant plume evolution. Expressions for the effective coefļ¬cients governing the solute transport are derived for retardation model, based on a two-rate sorption-desorption approach. The RWPT model was ļ¬rst veriļ¬ed by a benchmark test of solute transport in a one-dimensional homogeneous media to analysis the accuracy of the method with comparison to the analytical solution. The analysis was the next ended to applications witht hree-dimensional homogeneous aquifer. This method can be used as a tool to elicit and discern the detailed structure of evolving contaminant plumes

    Surface Modification of Magnesium and its Alloys Using Anodization for Orthopedic Implant Application

    Get PDF
    Magnesium (Mg) as a biodegradable implant brings a revolution in medical field application, especially in bone implant and stent application. Biodegradability of Mg has attracted attentions of researchers to avoid secondary surgery to remove the implant materials after healing process. Various advantages of Mg make it suitable for medical application such as density, good mechanical properties and biodegradation. However, Mg biodegradability must be controlled to meet tissue-healing period of time because of the high degradation in a physiological environment. Fast corrosion and high alkalinity due to hydrogen release induce tissue inflammation, which limits its clinical applications. Many techniques are applied to the Mg surface to improve surface biocompatibility and control its biodegradability. This chapter focuses on anodization of Mg and its alloys to improve corrosion resistance and biocompatibility for orthopedic application. Mg coating with thin film apatite could enhance the biocompatibility and increase osseointegration formation in the bone fracture side. Evaluation of the required anodized film discussed in the chapter such as chemical composition, biodegradability and biocompatibility

    One-pot Enzymatic Synthesis of Deoxy-thymidine-diphosphate (TDP)-2-deoxy-āˆ-d-glucose Using Phosphomannomutase

    Full text link
    Production of deoxy-thymidine-diphosphate (TDP)-sugars as substrates of glycosyltransferases, has been one of main hurdles for combinatorial antibiotic biosynthesis, which combines sugar moiety with aglycon of various antibiotics. Here, we report the one-pot enzymatic synthesis of TDP-2-deoxy-glucose employing high efficient TMP kinase (TMK; E.C. 2.7.2.12), acetate kinase (ACK; E.C. 2.7.1.21), and TDP-glucose synthase (TGS; E.C. 2.7.7.24) with phosphomannomutase (PMM; E.C. 5.4.2.8). In this study, replacing phosphoglucomutase (PGM; E.C. 5.4.2) by PMM from Escherichia coli gave four times higher specific activity on 2-deoxy-6-phosphate glucose, suggesting that the activity on 2-deoxy-glucose-6-phosphate was mainly affected by PMM activity, not PGM activity. Using an in vitro system starting from TMP and 2-deoxy-glucose-6-phosphate glucose, TDP-2-deoxy-glucose (63% yield) was successfully synthesized. Considering low productivity of NDP-sugars from cheap starting materials, this paper showed how production of NDP-sugars could be enhanced by controlling mutase activity

    Right ventricular function evaluated by volumetric analysis during left heart bypass in a canine model of postischemic cardiac dysfunction

    Get PDF
    AbstractRight ventricular function during left heart bypass was evaluated by volumetric analysis with a conductance catheter in 12 dogs with postischemic cardiac dysfunction. The conductance catheter was used to assess the volumetric status of the right ventricle and thereby allowed a right ventricular pressure-volume curve to be obtained, in which transient volume loading on the right ventricle was applied. The following right ventricular properties during left heart bypass were assessed and compared with properties measured without left heart bypass, by means of load-independent parameters: maximum elastance, stroke work/end-diastolic volume relation, end-diastolic pressure/volume relation, and stroke work/end-diastolic pressure relation. The stroke volume derived from the conductance catheter and the electromagnetic flow probe showed good linear correlation (r2 = 0.733 to 0.975). After initiation of left heart bypass, maximum elastance did not change significantly, although volume intercept significantly increased, from 1.2 Ā± 7.3 to 3.6 Ā± 7.9 ml ( p < 0.05). End-diastolic pressure/volume relation was well fitted to the exponential curve (EDP = e (k1 Ā· EDV+k2) ) and was shifted to the right and downward during left heart bypass; the slope k1 significantly decreased, from 0.12 Ā± 0.06 to 0.10 Ā± 0.07 ( p < 0.01). Stroke work/end-diastolic volume relation and stroke work/end-diastolic pressure relation were closely fitted to the linear regression, and their slopes were significantly increased during left heart bypass, from 0.14 Ā± 0.08 to 0.18 Ā± 0.08 ( p < 0.05) and from 0.22 Ā± 0.15 to 0.34 Ā± 0.19 ( p < 0.01), respectively. These results suggest that the decompression of the left ventricle and septal shifting by left heart bypass provide good diastolic compliance and good systolic performance because of afterload unloading of the right ventricle. Thus the left heart bypass improved the overall right ventricular performance, particularly at higher end-diastolic pressures, in dogs with postischemic cardiac dysfunction. (J THORAC CARDIOVASC SURG 1995;109:796-803
    • ā€¦
    corecore