122 research outputs found

    Acute Myocardial Infarction: The Relationship between Duration of Ischaemia and Infarct Size in Humans - Assessment by MRI and SPECT

    Get PDF
    The effect of duration of ischaemia on final infarct size is well established in animal studies, but not fully evaluated in humans. Delayed contrast-enhanced magnetic resonance imaging (DE-MRI) can be used to distinguish between viable and non-viable myocardium and thus to quantify infarct size. We therefore used DE-MRI to investigate how duration of ischaemia affects final infarct size normalized to myocardium at risk in humans (Paper IV). The results showed that 20-40 % of myocardium at risk was infarcted after 2-3 hours of occlusion, indicating that a major part of myocardium at risk may be salvaged if reperfusion is performed within the first few hours of occlusion. In order to study infarct evolution in humans, we first investigated the correlation between perfusion defect size assessed by myocardial single photon emission computed tomography (SPECT) perfusion imaging with final infarct size by DE-MRI (Paper I), showing that measurements by the two methods do not differ much for revascularized myocardial infarction. Biochemical markers of cardiac injury are used to estimate myocardial infarct size. The agreement between cumulative as well as peak values of biochemical markers and DE-MRI in patients with an occluded coronary artery was studied for Paper II.We showed that in order to estimate infarct size, serial measurements may be substituted by acquisitions at 3, 6, and 12 hours after reperfusion, saving both cost and time in the clinical setting. Finally, experimental infarction in pig was studied in collaboration with Uppsala University in order to provide a basis for further investigations on how MR contrast agents distribute in perfused and non-perfused myocardium in humans (Paper III). This study showed that perfusion is needed for delivery of contrast agent, and that the non-perfused myocardium, despite absence of contrast agent in this region, appears bright when nulling the signal from viable perfused myocardium using inversion-recovery DE-MRI

    Effects of gadolinium contrast agent on aortic blood flow and myocardial strain measurements by phase-contrast cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative blood flow and aspects of regional myocardial function such as myocardial displacement and strain can be measured using phase-contrast cardiovascular magnetic resonance (PC-CMR). Since a gadolinium-based contrast agent is often used to measure myocardial infarct size, we sought to determine whether the contrast agent affects measurements of aortic flow and myocardial displacement and strain. Phase-contrast data pre and post contrast agent was acquired during free breathing using 1.5T PC-CMR.</p> <p>Results</p> <p>For aortic flow and regional myocardial function 12 and 17 patients were analysed, respectively. The difference pre and post contrast agent was 0.03 ± 0.16 l/min for cardiac output, and 0.1 ± 0.5 mm for myocardial displacement. Linear regression for myocardial displacement (MD) after and before contrast agent (CA) showed MD<sub>postCA </sub>= 0.95MD<sub>preCA</sub>+0.05 (r = 0.95, p < 0.001). For regional myocardial function, the contrast-to-noise ratios for left ventricular myocardial wall versus left ventricular lumen were pre and post contrast agent administration 7.4 ± 3.3 and 4.4 ± 8.9, respectively (p < 0.001). The contrast-to-noise ratios for left ventricular myocardial wall versus surrounding tissue were pre and post contrast agent administration -16.9 ± 22 and -0.2 ± 6.3, respectively (p < 0.0001).</p> <p>Conclusions</p> <p>Quantitative measurements of aortic flow yield equal results both in the absence and presence of gadolinium contrast agent. The total examination time may thereby be reduced when assessing both viability and quantitative flow using PC-CMR, by assessing aortic flow post contrast agent administration. Phase-contrast information for myocardial displacement is also assessable both in the absence and presence of contrast agent. However, delineation of the myocardium may be difficult or impossible post contrast agent due to the lower image contrast. Acquisition of myocardial displacement should therefore be performed pre contrast agent using current PC-CMR sequences.</p

    Fetal cardiac magnetic resonance imaging of the descending aorta in suspected left-sided cardiac obstructions

    Get PDF
    BackgroundSevere left-sided cardiac obstructions are associated with high morbidity and mortality if not detected in time. The correct prenatal diagnosis of coarctation of the aorta (CoA) is difficult. Fetal cardiac magnetic resonance imaging (CMR) may improve the prenatal diagnosis of complex congenital heart defects. Flow measurements in the ascending aorta could aid in predicting postnatal CoA, but its accurate visualization is challenging.ObjectivesTo compare the flow in the descending aorta (DAo) and umbilical vein (UV) in fetuses with suspected left-sided cardiac obstructions with and without the need for postnatal intervention and healthy controls by fetal phase-contrast CMR flow. A second objective was to determine if adding fetal CMR to echocardiography (echo) improves the fetal CoA diagnosis.MethodsProspective fetal CMR phase-contrast flow in the DAo and UV and echo studies were conducted between 2017 and 2022.ResultsA total of 46 fetuses with suspected left-sided cardiac obstructions [11 hypoplastic left heart syndrome (HLHS), five critical aortic stenosis (cAS), and 30 CoA] and five controls were included. Neonatal interventions for left-sided cardiac obstructions (n = 23) or comfort care (n = 1 with HLHS) were pursued in all 16 fetuses with suspected HLHS or cAS and in eight (27%) fetuses with true CoA. DAo or UV flow was not different in fetuses with and without need of intervention. However, DAo and UV flows were lower in fetuses with either retrograde isthmic systolic flow [DAo flow 253 (72) vs. 261 (97) ml/kg/min, p = 0.035; UV flow 113 (75) vs. 161 (81) ml/kg/min, p = 0.04] or with suspected CoA and restrictive atrial septum [DAo flow 200 (71) vs. 268 (94) ml/kg/min, p = 0.04; UV flow 89 vs. 159 (76) ml/kg/min, p = 0.04] as well as in those without these changes. Adding fetal CMR to fetal echo predictors for postnatal CoA did not improve the diagnosis of CoA.ConclusionFetal CMR-derived DAo and UV flow measurements do not improve the prenatal diagnosis of left-sided cardiac obstructions, but they could be important in identifying fetuses with a more severe decrease in blood flow across the left side of the heart. The physiological explanation may be a markedly decreased left ventricular cardiac output with subsequent retrograde systolic isthmic flow and decreased total DAo flow

    Cardiovascular magnetic resonance of the myocardium at risk in acute reperfused myocardial infarction: comparison of T2-weighted imaging versus the circumferential endocardial extent of late gadolinium enhancement with transmural projection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the situation of acute coronary occlusion, the myocardium supplied by the occluded vessel is subject to ischemia and is referred to as the myocardium at risk (MaR). Single photon emission computed tomography has previously been used for quantitative assessment of the MaR. It is, however, associated with considerable logistic challenges for employment in clinical routine. Recently, T2-weighted cardiovascular magnetic resonance (CMR) has been introduced as a new method for assessing MaR several days after the acute event. Furthermore, it has been suggested that the endocardial extent of infarction as assessed by late gadolinium enhanced (LGE) CMR can also be used to quantify the MaR. Hence, we sought to assess the ability of endocardial extent of infarction by LGE CMR to predict MaR as compared to T2-weighted imaging.</p> <p>Methods</p> <p>Thirty-seven patients with early reperfused first-time ST-segment elevation myocardial infarction underwent CMR imaging within the first week after percutaneous coronary intervention. The ability of endocardial extent of infarction by LGE CMR to assess MaR was evaluated using T2-weighted imaging as the reference method.</p> <p>Results</p> <p>MaR determined with T2-weighted imaging (34 ± 10%) was significantly higher (p < 0.001) compared to the MaR determined with endocardial extent of infarction (23 ± 12%). There was a weak correlation between the two methods (r<sup>2 </sup>= 0.17, p = 0.002) with a bias of -11 ± 12%. Myocardial salvage determined with T2-weighted imaging (58 ± 22%) was significantly higher (p < 0.001) compared to myocardial salvage determined with endocardial extent of infarction (45 ± 23%). No MaR could be determined by endocardial extent of infarction in two patients with aborted myocardial infarction.</p> <p>Conclusions</p> <p>This study demonstrated that the endocardial extent of infarction as assessed by LGE CMR underestimates MaR in comparison to T2-weighted imaging, especially in patients with early reperfusion and aborted myocardial infarction.</p

    Infarct evolution in man studied in patients with first-time coronary occlusion in comparison to different species - implications for assessment of myocardial salvage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The time course of infarct evolution, i.e. how fast myocardial infarction (MI) develops during coronary artery occlusion, is well known for several species, whereas no direct evidence exists on the evolution of MI size normalized to myocardium at risk (MaR) in man. Despite the lack of direct evidence, current literature often refers to the "golden hour" as the time during which myocardial salvage can be accomplished by reperfusion therapy. Therefore, the aim of the present study was to investigate how duration of myocardial ischemia affects infarct evolution in man in relation to previous animal data. Consecutive patients with clinical signs of acute myocardial ischemia were screened and considered for enrollment. Particular care was taken to assure uniformity of the patients enrolled with regard to old MI, success of revascularization, collateral flow, release of biochemical markers prior to intervention etc. Sixteen patients were ultimately included in the study. Myocardium at risk was assessed acutely by acute Myocardial Perfusion Single photon emission computed tomography (MPS) and by T2 imaging (T2-STIR) cardiovascular magnetic resonance (CMR) after one week in 10 of the 16 patients. Infarct size was measured by late gadolinium enhancement (LGE) at one week.</p> <p>Results</p> <p>The time to reach 50% MI of the MaR (T<sub>50</sub>) was significantly shorter in pigs (37 min), rats (41 min) and dogs (181 min) compared to humans (288 min). There was no significant difference in T<sub>50 </sub>when using MPS compared to T2-STIR (p = 0.53) for assessment of MaR (288 ± 23 min vs 310 ± 22 min, T<sub>50 </sub>± standard error). The transmural extent of MI increased progressively as the duration of ischemia increased (R<sup>2 </sup>= 0.56, p < 0.001).</p> <p>Conclusion</p> <p>This is the first study to provide direct evidence of the time course of acute myocardial infarct evolution in relation to MaR in man with first-time MI. Infarct evolution in man is significantly slower than in pigs, rats and dogs. Furthermore, infarct evolution assessments in man are similar when using MPS acutely and T2-STIR one week later for determination of MaR, which significantly facilitates future clinical trials of cardioprotective therapies in acute coronary syndrome by the use of CMR.</p

    Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating

    Get PDF
    Background: Fetal cardiovascular magnetic resonance (CMR) imaging may provide a valuable adjunct to fetal echocardiography in the evaluation of congenital cardiovascular pathologies. However, dynamic fetal CMR is difficult due to the lack of direct in-utero cardiac gating. The aim of this study was to investigate the effectiveness of a newly developed Doppler ultrasound (DUS) device in humans for fetal CMR gating. Methods: Fifteen fetuses (gestational age 30–39 weeks) were examined using 1.5 T CMR scanners at three different imaging sites. A newly developed CMR-compatible DUS device was used to generate gating signals from fetal cardiac motion. Gated dynamic balanced steady-state free precession images were acquired in 4-chamber and short-axis cardiac views. Gating signals during data acquisition were analyzed with respect to trigger variability and sensitivity. Image quality was assessed by measuring endocardial blurring (EB) and by image evaluation using a 4-point scale. Left ventricular (LV) volumetry was performed using the single-plane ellipsoid model. Results: Gating signals from the fetal heart were detected with a variability of 26 ± 22 ms and a sensitivity of trigger detection of 96 ± 4%. EB was 2.9 ± 0.6 pixels (4-chamber) and 2.5 ± 0.1 pixels (short axis). Image quality scores were 3.6 ± 0.6 (overall), 3.4 ± 0.7 (mitral valve), 3.4 ± 0.7 (foramen ovale), 3.6 ± 0.7 (atrial septum), 3.7 ± 0.5 (papillary muscles), 3.8 ± 0.4 (differentiation myocardium/lumen), 3.7 ± 0.5 (differentiation myocardium/lung), and 3.9 ± 0.4 (systolic myocardial thickening). Inter-observer agreement for the scores was moderate to very good (kappa 0.57–0.84) for all structures. LV volumetry revealed mean values of 2.8 ± 1.2 ml (end-diastolic volume), 0.9 ± 0.4 ml (end systolic volume), 1.9 ± 0.8 ml (stroke volume), and 69.1 ± 8.4% (ejection fraction). Conclusion: High-quality dynamic fetal CMR was successfully performed using a newly developed DUS device for direct fetal cardiac gating. This technique has the potential to improve the utility of fetal CMR in the evaluation of congenital pathologies
    corecore