89 research outputs found

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. I. Flight Kinematics

    Get PDF
    Hummingbirds are nature’s masters of aerobatic manoeuvres. Previous research shows that hummingbirds and insects converged evolutionarily upon similar aerodynamic mechanisms and kinematics in hovering. Herein, we use three-dimensional kinematic data to begin to test for similar convergence of kinematics used for escape flight and to explore the effects of body size upon manoeuvring. We studied four hummingbird species in North America including two large species (magnificent hummingbird, Eugenes fulgens, 7.8 g, and blue-throated hummingbird, Lampornis clemenciae, 8.0 g) and two smaller species (broad-billed hummingbird, Cynanthus latirostris, 3.4 g, and black-chinned hummingbirds Archilochus alexandri, 3.1 g). Starting from a steady hover, hummingbirds consistently manoeuvred away from perceived threats using a drastic escape response that featured body pitch and roll rotations coupled with a large linear acceleration. Hummingbirds changed their flapping frequency and wing trajectory in all three degrees of freedom on a stroke-by-stroke basis, likely causing rapid and significant alteration of the magnitude and direction of aerodynamic forces. Thus it appears that the flight control of hummingbirds does not obey the ‘helicopter model’ that is valid for similar escape manoeuvres in fruit flies. Except for broad-billed hummingbirds, the hummingbirds had faster reaction times than those reported for visual feedback control in insects. The two larger hummingbird species performed pitch rotations and global-yaw turns with considerably larger magnitude than the smaller species, but roll rates and cumulative roll angles were similar among the four species

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres

    Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling

    Get PDF
    SummaryInsulin resistance is a primary defect in type 2 diabetes characterized by impaired peripheral glucose uptake and insufficient suppression of hepatic glucose output. Insulin signaling inhibits liver glucose production by inducing nuclear exclusion of the gluconeogenic transcription factor FOXO1 in an Akt-dependent manner. Through the concomitant application of genome-scale functional screening and quantitative image analysis, we have identified PTP-MEG2 as a modulator of insulin-dependent FOXO1 subcellular localization. Ectopic expression of PTP-MEG2 in cells inhibited insulin-induced phosphorylation of the insulin receptor, while RNAi-mediated reduction of PTP-MEG2 transcript levels enhanced insulin action. Additionally, adenoviral-mediated depletion of PTP-MEG2 in livers of diabetic (db/db) mice resulted in insulin sensitization and normalization of hyperglycemia. These data implicate PTP-MEG2 as a mediator of blood glucose homeostasis through antagonism of insulin signaling, and suggest that modulation of PTP-MEG2 activity may be an effective strategy in the treatment of type 2 diabetes

    Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus

    Get PDF
    Recently, there has been increasing interest in behavioral syndrome research across a range of taxa. Behavioral syndromes are suites of correlated behaviors that are expressed either within a given behavioral context (e. g., mating) or between different contexts (e. g., foraging and mating). Syndrome research holds profound implications for animal behavior as it promotes a holistic view in which seemingly autonomous behaviors may not evolve independently, but as a "suite" or "package." We tested whether laboratory-reared male and female European house crickets, Acheta domesticus, exhibited behavioral syndromes by quantifying individual differences in activity, exploration, mate attraction, aggressiveness, and antipredator behavior. To our knowledge, our study is the first to consider such a breadth of behavioral traits in one organism using the syndrome framework. We found positive correlations across mating, exploratory, and antipredatory contexts, but not aggression and general activity. These behavioral differences were not correlated with body size or condition, although age explained some of the variation in motivation to mate. We suggest that these across-context correlations represent a boldness syndrome as individual risk-taking and exploration was central to across-context mating and antipredation correlations in both sexes. © Springer-Verlag 2009

    A pilot evaluation of the Family Caregiver Support Program

    No full text
    The purposes of this study were to evaluate a federal and state-funded Family Caregiver Support Program (FCSP) and explore what types of caregiver support service are associated with what caregiver outcomes. Information was obtained on a sample of 164 caregivers' use of eleven different types of support service. Descriptive and comparative analyses were used to detect the differences between users and nonusers of caregiver support services. Six measures included were caregiving appraisal scale, caregiving burden, caregiving mastery, caregiving satisfaction, hour of care, and service satisfaction. Using consulting and education services is associated with lessening of subjective burden; using financial support services is associated with more beneficial caregiver appraisal, such as better caregiver mastery. The findings are practical and helpful for future caregiver service and program development and evaluation and policy making for supporting caregivers. In addition, the evaluation method demonstrated in the study provided a simple and moderately effective method for service agencies which would like to evaluate their family caregiver support services.Family Caregiver Support Program Program evaluation Caregiver Support services
    • …
    corecore