21 research outputs found
Genetic Variants in <i>CPA6</i> and <i>PRPF31</i> are Associated with Variation in Response to Metformin in Individuals with Type 2 Diabetes
Metformin is the first-line treatment for type 2 diabetes (T2D). Although widely prescribed, the glucose-lowering mechanism for metformin is incompletely understood. Here, we used a genome-wide association approach in a diverse group of individuals with T2D from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial to identify common and rare variants associated with HbA1c response to metformin treatment and followed up these findings in four replication cohorts. Common variants in PRPF31 and CPA6 were associated with worse and better metformin response, respectively (P < 5 × 10-6), and meta-analysis in independent cohorts displayed similar associations with metformin response (P = 1.2 × 10-8 and P = 0.005, respectively). Previous studies have shown that PRPF31(+/-) knockout mice have increased total body fat (P = 1.78 × 10-6) and increased fasted circulating glucose (P = 5.73 × 10-6). Furthermore, rare variants in STAT3 associated with worse metformin response (q <0.1). STAT3 is a ubiquitously expressed pleiotropic transcriptional activator that participates in the regulation of metabolism and feeding behavior. Here, we provide novel evidence for associations of common and rare variants in PRPF31, CPA6, and STAT3 with metformin response that may provide insight into mechanisms important for metformin efficacy in T2D
Variation in the Glucose Transporter gene <i>SLC2A2 </i>is associated with glycaemic response to metformin
Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear1. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10−14) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine
Countywide Evaluation of the Long-Term Family Self-Sufficiency Plan: Countywide Evaluation Report
The Los Angeles County Board of Supervisors adopted the Long-Term Family Self-Sufficiency (LTFSS) Plan in November, 1999. The LTFSS Plan consists of 46 projects whose goal is to promote self-sufficiency among families that are participating in the California Work Opportunity and Responsibility to Kids Act of 1997 (CalWORKs) program, former CalWORKs families, and other low-income families. The LTFSS Plan was explicitly guided by a results-based decision making framework developed by Mark Friedman. RAND analyzed historical quantitative data on indicators selected by the Plan to establish trends against which to track future LTFSS performance countywide. We also interviewed 65 key informants in the county and analyzed a wide range of written materials to assess the use and utility of the framework. This document summarizes the quantitative and qualitative findings from three earlier RAND reports on the LTFSS effort
Recommended from our members
Genetic Variants in CPA6 and PRPF31 are Associated with Variation in Response to Metformin in Individuals with Type 2 Diabetes
Metformin is the first-line treatment for type 2 diabetes (T2D). Although widely prescribed, the glucose-lowering mechanism for metformin is incompletely understood. Here, we used a genome-wide association approach in a diverse group of individuals with T2D from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial to identify common and rare variants associated with HbA1c response to metformin treatment and followed up these findings in four replication cohorts. Common variants in PRPF31 and CPA6 were associated with worse and better metformin response, respectively (P < 5 × 10-6), and meta-analysis in independent cohorts displayed similar associations with metformin response (P = 1.2 × 10-8 and P = 0.005, respectively). Previous studies have shown that PRPF31(+/-) knockout mice have increased total body fat (P = 1.78 × 10-6) and increased fasted circulating glucose (P = 5.73 × 10-6). Furthermore, rare variants in STAT3 associated with worse metformin response (q <0.1). STAT3 is a ubiquitously expressed pleiotropic transcriptional activator that participates in the regulation of metabolism and feeding behavior. Here, we provide novel evidence for associations of common and rare variants in PRPF31, CPA6, and STAT3 with metformin response that may provide insight into mechanisms important for metformin efficacy in T2D