93 research outputs found
Colchicum autumnale
Introduction. Goitre with euthyroid function or with subclinical or mild hyperthyroidism due to thyroid autonomy is common. In anthroposophic medicine various thyroid disorders are treated with Colchicum autumnale (CAU). We examined the effects of CAU in patients with goitre of both functional states. Patients and methods. In an observational study, 24 patients with goitre having suppressed thyroid stimulating hormone (TSH) levels with normal or slightly elevated free thyroxine (fT4) and free triiodothyronine (fT3) (group 1, n=12) or normal TSH, fT3, and fT4 (group 2, n=12) were included. After 3 months and after 6 to 12 months of CAU treatment, we investigated clinical pathology using the Hyperthyroid Symptom Scale (HSS), hormone status (TSH, fT4, and fT3), and thyroidal volume (tV). Results. After treatment with CAU, in group 1 the median HSS decreased from 4.5 (2.3â11.8) to 2 (1.3â3) (p<0.01) and fT3 decreased from 3.85 (3.5â4.78) to 3.45 (3.3â3.78)âpg/mL (p<0.05). In group 2 tV (13.9% (18.5%â6.1%)) and TSH (p<0.01) were reduced. Linear regression for TSH and fT3 in both groups indicated a regulative therapeutic effect of CAU. Conclusions. CAU positively changed the clinical pathology of subclinical hyperthyroidism and thyroidal volume in patients with euthyroid goitre by normalization of the regulation of thyroidal hormones
Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank
9 pĂĄginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved:
the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded
signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other
chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and
Conselleria de Pesca de la Xunta de GaliciaPeer reviewe
Joint Observation of the Galactic Center with MAGIC and CTA-LST-1
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
- âŠ