2,576 research outputs found
Life-stage specific environments in a cichlid fish: Implications for inducible maternal effects
Through environmentally induced maternal effects females may fine-tune their offspring's phenotype to the conditions offspring will encounter after birth. If juvenile and adult ecologies differ, the conditions that mothers experienced as juveniles may better predict their offspring's environment than the adult females' ambient conditions. Maternal effects induced by the environment experienced by females during their early ontogeny should evolve when three ecological conditions are met: (i) Adult ecology does not predict the postnatal environmental conditions of offspring; (ii) Environmental conditions for juveniles are correlated across successive generations; and (iii) Juveniles occasionally settle in conditions that differ from the juvenile habitat of their mothers. By combining size-structured population counts, ecological surveys and a genetic analysis of population structure we provide evidence that all three conditions hold for Simochromis pleurospilus, a cichlid fish in which mothers adjust offspring quality to their own juvenile ecology. Adults of many species cannot predict offspring's environment from ambient cues. Hence we predict that life-stage specific maternal effects are common in animals. Therefore, it is important to incorporate parental ontogeny in the study of parental effects when juveniles and adults inhabit different environments
Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale
We conducted three torsion-balance experiments to test the gravitational
inverse-square law at separations between 9.53 mm and 55 micrometers, probing
distances less than the dark-energy length scale m. We find with 95% confidence
that the inverse-square law holds () down to a length scale
m and that an extra dimension must have a size m.Comment: 4 pages, 6 figure
Isotopic variation of parity violation in atomic ytterbium
We report on measurements of atomic parity violation, made on a chain of
ytterbium isotopes with mass numbers A=170, 172, 174, and 176. In the
experiment, we optically excite the 6s2 1S0 -> 5d6s 3D1 transition in a region
of crossed electric and magnetic fields, and observe the interference between
the Stark- and weak-interaction-induced transition amplitudes, by making field
reversals that change the handedness of the coordinate system. This allows us
to determine the ratio of the weak-interaction-induced electric-dipole (E1)
transition moment and the Stark-induced E1 moment. Our measurements, which are
at the 0.5% level of accuracy for three of the four isotopes measured, allow a
definitive observation of the isotopic variation of the weak-interaction
effects in an atom, which is found to be consistent with the prediction of the
Standard Model. In addition, our measurements provide information about an
additional Z' boson.Comment: 19 pages, 4 figures, 2 table
f(R) actions, cosmic acceleration and local tests of gravity
We study spherically symmetric solutions in f(R) theories and its
compatibility with local tests of gravity. We start by clarifying the range of
validity of the weak field expansion and show that for many models proposed to
address the Dark Energy problem this expansion breaks down in realistic
situations. This invalidates the conclusions of several papers that make
inappropriate use of this expansion. For the stable models that modify gravity
only at small curvatures we find that when the asymptotic background curvature
is large we approximately recover the solutions of Einstein gravity through the
so-called Chameleon mechanism, as a result of the non-linear dynamics of the
extra scalar degree of freedom contained in the metric. In these models one
would observe a transition from Einstein to scalar-tensor gravity as the
Universe expands and the background curvature diminishes. Assuming an adiabatic
evolution we estimate the redshift at which this transition would take place
for a source with given mass and radius. We also show that models of dynamical
Dark Energy claimed to be compatible with tests of gravity because the mass of
the scalar is large in vacuum (e.g. those that also include R^2 corrections in
the action), are not viable.Comment: 26 page
Signals for Lorentz Violation in Post-Newtonian Gravity
The pure-gravity sector of the minimal Standard-Model Extension is studied in
the limit of Riemann spacetime. A method is developed to extract the modified
Einstein field equations in the limit of small metric fluctuations about the
Minkowski vacuum, while allowing for the dynamics of the 20 independent
coefficients for Lorentz violation. The linearized effective equations are
solved to obtain the post-newtonian metric. The corresponding post-newtonian
behavior of a perfect fluid is studied and applied to the gravitating many-body
system. Illustrative examples of the methodology are provided using bumblebee
models. The implications of the general theoretical results are studied for a
variety of existing and proposed gravitational experiments, including lunar and
satellite laser ranging, laboratory experiments with gravimeters and torsion
pendula, measurements of the spin precession of orbiting gyroscopes, timing
studies of signals from binary pulsars, and the classic tests involving the
perihelion precession and the time delay of light. For each type of experiment
considered, estimates of the attainable sensitivities are provided. Numerous
effects of local Lorentz violation can be studied in existing or near-future
experiments at sensitivities ranging from parts in 10^4 down to parts in
10^{15}.Comment: 46 pages two-column REVTeX, accepted in Physical Review
Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale
Simple models are constructed for "acceleressence" dark energy: the latent
heat of a phase transition occurring in a hidden sector governed by the seesaw
mass scale v^2/M_Pl, where v is the electroweak scale and M_Pl the
gravitational mass scale. In our models, the seesaw scale is stabilized by
supersymmetry, implying that the LHC must discover superpartners with a
spectrum that reflects a low scale of fundamental supersymmetry breaking.
Newtonian gravity may be modified by effects arising from the exchange of
fields in the acceleressence sector whose Compton wavelengths are typically of
order the millimeter scale. There are two classes of models. In the first class
the universe is presently in a metastable vacuum and will continue to inflate
until tunneling processes eventually induce a first order transition. In the
simplest such model, the range of the new force is bounded to be larger than 25
microns in the absence of fine-tuning of parameters, and for couplings of order
unity it is expected to be \approx 100 microns. In the second class of models
thermal effects maintain the present vacuum energy of the universe, but on
further cooling, the universe will "soon" smoothly relax to a matter dominated
era. In this case, the range of the new force is also expected to be of order
the millimeter scale or larger, although its strength is uncertain. A firm
prediction of this class of models is the existence of additional energy
density in radiation at the eV era, which can potentially be probed in
precision measurements of the cosmic microwave background. An interesting
possibility is that the transition towards a matter dominated era has occurred
in the very recent past, with the consequence that the universe is currently
decelerating.Comment: 10 pages, references adde
Post-Einsteinian tests of linearized gravitation
The general relativistic treatment of gravitation can be extended by
preserving the geometrical nature of the theory but modifying the form of the
coupling between curvature and stress tensors. The gravitation constant is thus
replaced by two running coupling constants which depend on scale and differ in
the sectors of traceless and traced tensors. When calculated in the solar
system in a linearized approximation, the metric is described by two
gravitation potentials. This extends the parametrized post-Newtonian (PPN)
phenomenological framework while allowing one to preserve compatibility with
gravity tests performed in the solar system. Consequences of this extension are
drawn here for phenomena correctly treated in the linear approximation. We
obtain a Pioneer-like anomaly for probes with an eccentric motion as well as a
range dependence of Eddington parameter to be seen in light deflection
experiments.Comment: 15 pages. Accepted version, to appear in Classical and Quantum
Gravit
- …