6,198 research outputs found
STS-8 bet results
The final Best Estimate Trajectory (BET) products, i.e., the reconstructed trajectory, the Extended BET, AEROBET and MMLE input files, generated for the eighth NASA Space Shuttle flight are documented. The reconstructed trajectory (inertial BET) for this Challenger flight, the first night landing is discussed. State (position, velocity, and attitude) plus three accelerometer scale factors were determined from fitting the Guam S-band data, seven C-band passes, and pseudo Doppler and altimeter during rollout on Runway 22. The anchor epoch utilized for the batch weighted-least-squares determination was Sept. 5, 1983 7h1m50s.0 (25310 GMT seconds). The spacecraft altitude at epoch is approx. 617 kft. IMU2 data were selected for the reconstruction
Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights
NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights
STS-13 (41-C) BET products
Results from the STS-13 (41-C) Shuttle entry flight are presented. The entry trajectory was reconstructed from an altitude of 700 kft through rollout on Runway 17 at EAFB. The anchor epoch utilized was April 13, 1984 13(h)1(m)30.(s)0 (46890(s).0) GMT. The final reconstructed inertial trajectory for this flight is BT13M23 under user catalog 169750N. Trajectory reconstruction and Extended BET development are discussed in Section 1 and 2, respectively. The NOAA totem-pole atmosphere extracted from the JSC/TRW BET was adopted in the development of the LaRC Extended BET, namely ST13BET/UN=274885C. The Aerodynamic BET was generated on physical nine track reel NC0728 with a duplicate copy on NC0740 for back-up. Plots of the more relevant parameters from the AEROBET are presented in Section 3. Section 4 discusses the MMLE input files created for STS-13. Appendices are attached which present spacecraft and physical constants utilized (Appendix A), residuals by station and data type (Appendix B), a two second spaced listing of trajectory and air data parameters (Appendix C), and input and output source products for archival (Appendix D)
Reconstruction of the 1st Space Shuttle (STS-1) entry trajectory
A discussion of the generation of the best estimate trajectory (BET) of the first Space Shuttle Orbiter entry flight is presented. The BET defines a time history of the state, attitude, and atmospheric relative parameters throughout the Shuttle entry from an altitude of approximately 183 km to rollout. The inertial parameters were estimated utilizing a weighted least squares batch filter algorithm. Spacecraft angular rate and acceleration data derived from the Inertial Measurement Unit were utilized to predict the state and attitude which was constrained in a weighted least squares process to fit external tracking data consisting of ground based S-band and C-band data. Refined spacecraft altitude and velocity during and post rollout were obtained by processing artificial altimeter and Doppler data. The BET generation process is discussed. Software and data interface discussions are included. The variables and coordinate systems utilized are defined. STS-1 mission peculiar inputs are summarized. A listing of the contents of the actual BET is provided
Trajectory reconstruction and aerodynamic results from the first Discovery flight, STS-14(41-D)
Trajectory reconstruction results for the first Discovery flight are presented. Spacecraft dynamic measurements from IMU2 were utilized in conjunction with the ground based tracking data from two S-band stations, eight C-band, and five cameras at Edwards Air Force Base to determine the spacecraft trajectory from epoch through roll-out on Runway 17. Specifics as to the trajectory reconstruction are discussed in Section 1. The final inertial profile is BT14NO2/UN=169750N. Merging of this file with the final LAIRS atmosphere is discussed in Section 2. The final Extended BET is ST14BET/UN=274885C. Section 3 presents plots of relevant parameters from the AEROBET as well as aerodynamic performance comparison results. High frequency files for maneuver extraction were also generated as discussed in Section 4. Appendices are attached which contain: (1) spacecraft and physical parameters utilized, (2) final residuals obtained from the data fitting process, (3) listing of trajectory parameters, and (4) archival information
STS-9 BET products
The final products generated for the STS-9, which landed on December 8, 1983 are reported. The trajectory reconstruction utilized an anchor epoch of GMT corresponding to an initial altitude of h 356 kft, selected in view of the limited tracking coverage available. The final state utilized IMU2 measurements and was based on processing radar tracking from six C-bands and a single S-band station, plus six photo-theodolite cameras in the vicinity of Runway 17 at Edwards Air Force Base. The final atmosphere (FLAIR9/UN=581199C) was based on a composite of the remote measured data and the 1978 Air Force Reference Atmosphere model. The Extended BET is available as STS9BET/UN=274885C. The AEROBET and MMLE input files created are discussed. Plots of the more relevant parameters from the AEROBET (reel number NL0624) are included. Input parameters, final residual plots, a trajectory listing, and data archival information are defined
Challenger STS-17 (41-G) post-flight best estimate trajectory products: Development and summary results
Results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h approx. 297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I, i.e., relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost approx. 7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (H approx. 230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) devoting input (source) and output files and/or physical reels
Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)
The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated
Cosmic-Ray Events as Background in Imaging Atmospheric Cherenkov Telescopes
The dominant background for observations of gamma-rays in the energy region
above 50 GeV with Imaging Atmospheric Cherenkov telescopes are cosmic-ray
events. The images of most of the cosmic ray showers look significantly
different from those of gamma-rays and are therefore easily discriminated.
However, a small fraction of events seems to be indistinguishable from
gamma-rays. This constitutes an irreducible background to the observation of
high-energy gamma-ray sources, and limits the sensitivity achievable with a
given instrument. Here, a Monte Carlo study of gamma-like cosmic-ray events is
presented. The nature of gamma-like cosmic-ray events, the shower particles
that are responsible for the gamma-like appearance, and the dependence of these
results on the choice of the hadronic interaction model are investigated. Most
of the gamma-like cosmic ray events are characterised by the production of
high-energy pi0's early in the shower development which dump most of the shower
energy into electromagnetic sub-showers. Also Cherenkov light from single muons
can mimic gamma-rays in close-by pairs of telescopes. Differences of up to 25%
in the collection area for gamma-like proton showers between QGSJet/FLUKA and
Sibyll/FLUKA simulations have been found.Comment: Accepted by Journal of Astroparticle Physic
Constraining the fundamental parameters of the O-type binary CPD-41degr7733
Using a set of high-resolution spectra, we studied the physical and orbital
properties of the O-type binary CPD-41 7733, located in the core of \ngc. We
report the unambiguous detection of the secondary spectral signature and we
derive the first SB2 orbital solution of the system. The period is 5.6815 +/-
0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably
consists of stars of spectral types O8.5 and B3. As for other objects in the
cluster, we observe discrepant luminosity classifications while using
spectroscopic or brightness criteria. Still, the present analysis suggests that
both components display physical parameters close to those of typical O8.5 and
B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during
six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no
significant variability between the different pointings, nor within the
individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a
three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4
keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction,
is observed. The emission of CPD-41 7733 is thus very representative of typical
O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure
- …