4,027 research outputs found

    Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    Full text link
    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.Comment: 8 pages, 3 figures; v2: replaced with journal versio

    The neutron 'thunder' accompanying the extensive air shower

    Get PDF
    Simulations show that neutrons are the most abundant component among extensive air shower hadrons. However, multiple neutrons which appear with long delays in neutron monitors nearby the EAS core ('neutron thunder') are mostly not the neutrons of the shower, but have a secondary origin. The bulk of them is produced by high energy EAS hadrons hitting the monitors. The delays are due to the termalization and diffusion of neutrons in the moderator and reflector of the monitor accompanied by the production of secondary gamma-quanta. This conclusion raises the important problem of the interaction of EAS with the ground, the stuff of the detectors and their environment since they have often hydrogen containing materials like polyethilene in neutron monitors. Such interaction can give an additional contribution to the signal in the EAS detectors. It can be particularly important for the signals from scintillator or water tank detectors at km-long distances from the EAS core where neutrons of the shower become the dominant component after a few mcsec behind the EAS front.Comment: 12 pages, 4 figures, accepted by J.Phys.G: Nucl.Part.Phy

    The limits to global-warming mitigation by terrestrial carbon removal

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Massive near-term greenhouse gas emissions reduction is a precondition for staying “well below 2°C” global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature “overshoot” in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to “repair” delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract “business-as-usual” emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires > 1.1 Gha of the most productive agricultural areas or the elimination of > 50% of natural forests. In addition, > 100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160–190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable “supporting actor” for strong mitigation if sustainable schemes are established immediately.This study was funded by the German Research Foundation's priority program DFG SPP 1689 on “Climate Engineering – Risks, Challenges and Opportunities?” and specifically the CE-LAND project. T.M.L. was supported by a Royal Society Wolfson Research Merit Award

    Агро- и микроклиматическая оценка условий формирования урожайности винограда

    Get PDF
    Проблема агроклиматического обеспечения аграрного сектора экономики остается важнейшей задачей агрометеорологов и направлена на оценку агроклиматических ресурсов территорий с целью оптимизации размещения сельскохозяйственных культур как условия повышения продуктивности и стабильности отрасли. Актуальность исследований в этом направлении обусловлена отсутствием информации о реально достижимой урожайности отдельных сельскохозяйственных культур как в региональном разрезе, так и на локальном уровне.Проблема агрокліматічеського забезпечення аграрного сектора економіки залишається найважливішою задачею агрометеорології і направлена на оцінку агрокліматічеськіх ресурсів територій з метою оптимізації розміщення сільськогосподарських культур як умови підвищення продуктивності і стабільності галузі. Актуальність досліджень в цьому напрямі обумовлена відсутністю інформації про реально досяжну врожайність окремих сільськогосподарських культур як в регіональному розрізі, так і на локальному рівні

    On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements

    Full text link
    For the first time a complete set of the most recent direct data on primary cosmic ray spectra is used as input into calculations of muon flux at sea level in wide energy range Eμ=13105E_\mu=1-3\cdot10^5 GeV. Computations have been performed with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained muon intensity with the data of muon experiments shows, that measurements of primary nuclei spectra conform to sea level muon data only up to several tens of GeV and result in essential deficit of muons at higher energies. As it follows from our examination, uncertainties in muon flux measurements and in the description of nuclear cascades development are not suitable to explain this contradiction, and the only remaining factor, leading to this situation, is underestimation of primary light nuclei fluxes. We have considered systematic effects, that may distort the results of the primary cosmic ray measurements with the application of the emulsion chambers. We suggest, that re-examination of these measurements is required with the employment of different hadronic interaction models. Also, in our point of view, it is necessary to perform estimates of possible influence of the fact, that sizable fraction of events, identified as protons, actually are antiprotons. Study of these cosmic ray component begins to attract much attention, but today nothing definite is known for the energies >40>40 GeV. In any case, to realize whether the mentioned, or some other reasons are the sources of disagreement of the data on primaries with the data on muons, the indicated effects should be thoroughly analyzed

    Charm Production in DPMJET

    Full text link
    In this work, charm production in the {\sc dpmjet} hadronic jet simulation is compared to experimental data. Since the major application of {\sc dpmjet} is the simulation of cosmic ray-induced air showers, the version of the code integrated in the CORSIKA simulation package has been used for the comparison. Wherever necessary, adjustments have been made to improve agreement between simulation and data. With the availability of new muon/neutrino detectors that combine a large fiducial volume with large amounts of shielding, investigation of prompt muons and neutrinos from cosmic ray interactions will be feasible for the first time. Furthermore, above 100\gtrsim 100 TeV charmed particle decay becomes the dominant background for diffuse extraterrestrial neutrino flux searches. A reliable method to simulate charm production in high-energy proton-nucleon interactions is therefore required.Comment: 10 pages, to be published in JCA

    Fermion Quasi-Spherical Harmonics

    Full text link
    Spherical Harmonics, Ym(θ,ϕ)Y_\ell^m(\theta,\phi), are derived and presented (in a Table) for half-odd-integer values of \ell and mm. These functions are eigenfunctions of L2L^2 and LzL_z written as differential operators in the spherical-polar angles, θ\theta and ϕ\phi. The Fermion Spherical Harmonics are a new, scalar and angular-coordinate-dependent representation of fermion spin angular momentum. They have 4π4\pi symmetry in the angle ϕ\phi, and hence are not single-valued functions on the Euclidean unit sphere; they are double-valued functions on the sphere, or alternatively are interpreted as having a double-sphere as their domain.Comment: 16 pages, 2 Tables. Submitted to J.Phys.
    corecore