56 research outputs found

    Investigating of Moringa Oleifera Role on Gut Microbiota Composition and Inflammation Associated with Obesity Following High Fat Diet Feeding

    Get PDF
    AIM: The alteration in the gut microbial community has been regarded as one of the main factors related to obesity and metabolic disorders. To date, little is known about Moringa oleifera as a nutritional intervention to modulate the microbiota imbalance associated with obesity. Therefore we aim to explore the role of aqueous Moringa oleiferous leaf extract on Lactobacilli and Bifidobacteria in high-fat diet-induced obesity and to investigate whether any restoration in the number of caecal Lactobacilli and Bifidobacteria could modulate obesity-induced inflammation.METHODS: Young Swiss albino mice were divided into three groups according to their diet. Two of them were fed on either high fat diet or high fat diet+aqueous extract of Moringa oleifera leaf, while the third group was fed on the control diet. Bacterial DNAs were isolated from the mice digesta samples for bacteria level estimation using Quantitative real-time polymerase chain reaction along with serum interleukin-6 and lipid profileRESULTS: Compared to the normal control mice, high-fat diet feeding mice showed significantly reduced intestinal levels of Bifidobacteria, and increased body weight, interleukin 6, and levels of Lactobacilli. Upon treatment with Moringa oleifera, body weight, interleukin 6, and both bacteria levels were significantly restoredCONCLUSIONS: Our findings suggest that Moringa oliefera aqueous leaf extract may contribute towards the pathophysiological regulation of weight gain, inflammation associated with high-fat-induced-obesity through gut bacteria modulation

    CYP1B1 and myocilin gene mutations in Egyptian patients with primary congenital glaucoma

    Get PDF
    Purpose: Primary congenital glaucoma (PCG) accounts for 26–29% of childhood blindness in Egypt. The identification of disease causing mutations has not been extensively investigated. We aimed to examine the frequency of CYP1B1 and MYOC mutations in PCG Egyptian patients, and study a possible genotype/phenotype correlation.Methods: Ninety-eight patients with PCG diagnosed at the Ophthalmology department ofAlexandria Main University Hospital were enrolled. Demographic and phenotypic characteristics were recorded. Patients and 100 healthy subjects (control group) were screened for two mutations in CYP1B1 gene (G61E, R368H) and one mutation in MYOC gene (Gln48His) using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). Phenotypic characteristics pertaining to disease severity were compared.Results: Nineteen patients (19%) with PCG were found positive for one or more of the mutations screened for. Seven patients (7%) were homozygous for the G61E mutation. Ten patients (10%) were heterozygous; 6 for the G61E mutation, 2 for the R368H mutation and 2 for the Gln48His mutation. Two patients (2%) were double heterozygotes harboring a R368H as well as a Gln48His mutation. The most common mutation observed was the G61E in 13 patients; 7 homozygotes and 6 heterozygotes for the mutation. The control group were negative for all mutations screened for. No significant correlations between the mutations and phenotype severity were detected. A statistically significant positive correlation however was found between the different mutations andeach of the IOP and the cup/disk ratio.Conclusion: The current study further endorses the role of CYP1B1 mutations in the etiology of PCG among Egyptian patients and is the first study to report MYOC gene mutation in Egyptian patients with PCG

    Relation between Fibrinogen Gene Polymorphisms and Microvascular Complications in Patients with Type 1 Diabetes: A Cross-Sectional Study

    Get PDF
    Objective: The present work aimed at genotyping fibrinogen beta (FGB) gene rs1800790 polymorphism and studying its relation to plasma fibrinogen (FG) level and microvascular complications in patients with type 1 diabetes (T1D). Materials and methods: The study included 100 patients with T1D attending outpatient clinic. Full history taking and physical examination were done. Routine biochemical parameters and plasma FG level were measured. Genotyping of rs1800790 FGB gene polymorphism was done. Results: The study included 52 females and 48 males with T1D with mean diabetes duration of 7.75 ± 2.95 years. Their mean age was 14.71 ± 3.24 years. Plasma FG level was significantly higher in patients with diabetic peripheral neuropathy (DPN) (p = 0.024) and in patients with diabetic kidney disease (DKD) (p = 0.036). No significant relation was found between plasma FG level and rs1800790 FGB gene polymorphism. The GA genotype of gene polymorphism was associated with 6 times increased risk of DPN. The dominant mode GA + AA was associated with a 4 and 7 folds increased risk of DPN in univariate and multivariate analysis respectively. A cut-off values of plasma FG > 348 mg/dL and > 358 mg/dL were able to differentiate patients with DPN and DKD respectively. Conclusions: In patients with T1D, the GA and the GA + AA genotypes of rs1800790 FGB gene polymorphism were significantly associated with DPN while plasma FG level was associated with DPN and DKD but not with rs1800790 FGB gene polymorphism

    Case Study in Refractory Non-Hodgkin's Lymphoma: Successful Treatment with Plerixafor

    Get PDF
    The present case study describes our experience in treating a young woman diagnosed with a relapsing case of diffuse large cell lymphoma, who was heavily pre-treated with chemotherapy and radiotherapy. Our only chance to improve her survival was by using high-dose chemotherapy, followed by peripheral stem cell rescue. Unfortunately, in this patient, collecting sufficient stem cells for bone marrow transplantation proved to be very difficult since she had already been heavily treated with chemotherapy and radiotherapy. Currently, granulocyte colony-stimulating factor (G-CSF) alone or G-CSF plus chemotherapy are the most commonly used treatments for stem cell mobilization. However, 5–30% of patients do not respond to these agents. Plerixafor is a new hematopoietic stem cell-mobilizing drug that antagonizes the binding of chemokine stromal cell-derived factor-1α to CXC chemokine receptor 4. It is indicated in combination with G-CSF to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation in patients with non-Hodgkin's lymphoma and multiple myeloma [Kessans et al.: Pharmacotherapy 2010;30:485–492; Jantunen: Expert Opin Biol Ther 2011;11:1241–1248]. Based on our findings, we consider plerixafor to be a very efficient and practical solution to mobilize and collect stem cells among all patients in such a situation, enabling us to proceed to autologous bone marrow transplantation and peripheral stem cell rescue in order to improve the patients’ overall survival

    Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort

    Get PDF
    Background Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests.Methods The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries.Results Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results.Conclusions This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Characterizing the morbid genome of ciliopathies

    Get PDF
    Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies

    Neuromuscular disease genetics in under-represented populations: increasing data diversity

    Get PDF
    Neuromuscular diseases (NMDs) affect ∼15 million people globally. In high income settings DNA-based diagnosis has transformed care pathways and led to gene-specific therapies. However, most affected families are in low-to-middle income countries (LMICs) with limited access to DNA-based diagnosis. Most (86%) published genetic data is derived from European ancestry. This marked genetic data inequality hampers understanding of genetic diversity and hinders accurate genetic diagnosis in all income settings. We developed a cloud-based transcontinental partnership to build diverse, deeply-phenotyped and genetically characterized cohorts to improve genetic architecture knowledge, and potentially advance diagnosis and clinical management. We connected 18 centres in Brazil, India, South Africa, Turkey, Zambia, Netherlands and the UK. We co-developed a cloud-based data solution and trained 17 international neurology fellows in clinical genomic data interpretation. Single gene and whole exome data were analysed via a bespoke bioinformatics pipeline and reviewed alongside clinical and phenotypic data in global webinars to inform genetic outcome decisions. We recruited 6001 participants in the first 43 months. Initial genetic analyses ‘solved’ or ‘possibly solved’ ∼56% probands overall. In-depth genetic data review of the four commonest clinical categories (limb girdle muscular dystrophy, inherited peripheral neuropathies, congenital myopathy/muscular dystrophies and Duchenne/Becker muscular dystrophy) delivered a ∼59% ‘solved’ and ∼13% ‘possibly solved’ outcome. Almost 29% of disease causing variants were novel, increasing diverse pathogenic variant knowledge. Unsolved participants represent a new discovery cohort. The dataset provides a large resource from under-represented populations for genetic and translational research. In conclusion, we established a remote transcontinental partnership to assess genetic architecture of NMDs across diverse populations. It supported DNA-based diagnosis, potentially enabling genetic counselling, care pathways and eligibility for gene-specific trials. Similar virtual partnerships could be adopted by other areas of global genomic neurological practice to reduce genetic data inequality and benefit patients globally

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
    corecore