43 research outputs found

    Cosmology with Weak Lensing Surveys

    Full text link
    Weak gravitational lensing surveys measure the distortion of the image of distant sources due to the deflections of light rays by the fluctuations of the gravitational potential along the line of sight. Since they probe the non-linear matter power spectrum itself at medium redshift such surveys are complimentary to both galaxy surveys (which follow stellar light) and cosmic microwave background observations (which probe the linear regime at high redshift). Ongoing CMB experiments such as WMAP and the future Planck satellite mission will measure the standard cosmological parameters with unprecedented accuracy. The focus of attention will then shift to understanding the nature of dark matter and vacuum energy: several recent studies suggest that lensing is the best method for constraining the dark energy equation of state. During the next 5 year period ongoing and future weak lensing surveys such as the Joint Dark Energy Mission (JDEM, e.g. SNAP) or the Large-aperture Synoptic Survey Telescope (LSST) will play a major role in advancing our understanding of the universe in this direction. In this review article we describe various aspects of weak lensing surveys and how they can help us in understanding our universe.Comment: 15 pages, review article to appear in 2005 Triennial Issue of Phil. Trans.

    Weak gravitational lensing

    Full text link
    In this brief review I consider the advances made in weak gravitational lensing over the last 8 years, concentrating on the large scales - cosmic shear. I outline the theoretical developments, observational status, and the challenges which cosmic shear must overcome to realise its full potential. Finally I consider the prospects for probing Dark Energy and extra-dimensional gravity theories with future experiments.Comment: 6 pages. Short version of invited review at Moriond Cosmology 200

    The Scale of Cosmic Isotropy

    Full text link
    The most fundamental premise to the standard model of the universe, the Cosmological Principle (CP), states that the large-scale properties of the universe are the same in all directions and at all comoving positions. Demonstrating this theoretical hypothesis has proven to be a formidable challenge. The cross-over scale R_{iso} above which the galaxy distribution becomes statistically isotropic is vaguely defined and poorly (if not at all) quantified. Here we report on a formalism that allows us to provide an unambiguous operational definition and an estimate of R_{iso}. We apply the method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7, finding that R_{iso}\sim 150h^{-1} Mpc. Besides providing a consistency test of the Copernican principle, this result is in agreement with predictions based on numerical simulations of the spatial distribution of galaxies in cold dark matter dominated cosmological models.Comment: 15 pages, 4 figures, accepted by JCAP. The text matches the published versio

    The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models

    Get PDF
    In (Hansen et al. 2002) we presented a new approach for measuring non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern, based on the multivariate empirical distribution function of the spherical harmonics a_lm of a CMB map. The present paper builds upon the same ideas and proposes several improvements and extensions. More precisely, we exploit the additional information on the random phases of the a_lm to provide further tests based on the empirical distribution function. Also we take advantage of the effect of rotations in improving the power of our procedures. The suggested tests are implemented on physically motivated models of non-Gaussian fields; Monte-Carlo simulations suggest that this approach may be very promising in the analysis of non-Gaussianity generated by non-standard models of inflation. We address also some experimentally meaningful situations, such as the presence of instrumental noise and a galactic cut in the map.Comment: 15 pages, 6 figures, submitted to Phys. Rev.

    Detection Limits for Super-Hubble Suppression of Causal Fluctuations

    Full text link
    We investigate to what extent future microwave background experiments might be able to detect a suppression of fluctuation power on large scales in flat and open universe models. Such suppression would arise if fluctuations are generated by causal processes, and a measurement of a small suppression scale would be problematic for inflation models, but consistent with many defect models. More speculatively, a measurement of a suppression scale of the order of the present Hubble radius could provide independent evidence for a fine-tuned inflation model leading to a low-density universe. We find that, depending on the primordial power spectrum, a suppression scale modestly larger than the visible Horizon can be detected, but that the detectability drops very rapidly with increasing scale. For models with two periods of inflation, there is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200

    Could thermal fluctuations seed cosmic structure?

    Full text link
    We examine the possibility that thermal, rather than quantum, fluctuations are responsible for seeding the structure of our universe. We find that while the thermalization condition leads to nearly Gaussian statistics, a Harrisson-Zeldovich spectrum for the primordial fluctuations can only be achieved in very special circumstances. These depend on whether the universe gets hotter or colder in time, while the modes are leaving the horizon. In the latter case we find a no-go theorem which can only be avoided if the fundamental degrees of freedom are not particle-like, such as in string gases near the Hagedorn phase transition. The former case is less forbidding, and we suggest two potentially successful ``warming universe'' scenarios. One makes use of the Phoenix universe, the other of ``phantom'' matter.Comment: minor corrections made, references added, matches the version accepted to PR

    Testing for non-Gaussianity of the cosmic microwave background in harmonic space: an empirical process approach

    Get PDF
    We present a new, model-independent approach for measuring non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern. Our approach is based on the empirical distribution function of the normalized spherical harmonic expansion coefficients a_lm of a nearly full-sky CMB map, like the ones expected from forthcoming satellite experiments. Using a set of Kolmogorov-Smirnov type tests, we check for Gaussianity and independency of the a_lm. We test the method on two non-Gaussian toy-models of the CMB, one generated in spherical harmonic space and one in pixel (real) space. We also provide some rigorous results, possibly of independent interest, on the exact distribution of the spherical harmonic coefficients normalized by an estimated angular power spectrum.Comment: 29 pages, 7 figures, submitted to Phys. Rev.

    Tomography from the Next Generation of Cosmic Shear Experiments for Viable f(R) Models

    Full text link
    We present the cosmic shear signal predicted by two viable cosmological models in the framework of modified-action f(R) theories. We use f(R) models where the current accelerated expansion of the Universe is a direct consequence of the modified gravitational Lagrangian rather than Dark Energy (DE), either in the form of vacuum energy/cosmological constant or of a dynamical scalar field (e.g. quintessence). We choose Starobinsky's (St) and Hu & Sawicki's (HS) f(R) models, which are carefully designed to pass the Solar System gravity tests. In order to further support - or rule out - f(R) theories as alternative candidates to the DE hypothesis, we exploit the power of weak gravitational lensing, specifically of cosmic shear. We calculate the tomographic shear matrix as it would be measured by the upcoming ESA Cosmic Vision Euclid satellite. We find that in the St model the cosmic shear signal is almost completely degenerate with LCDM, but it is easily distinguishable in the HS model. Moreover, we compute the corresponding Fisher matrix for both the St and HS models, thus obtaining forecasts for their cosmological parameters. Finally, we show that the Bayes factor for cosmic shear will definitely favour the HS model over LCDM if Euclid measures a value larger than ~0.02 for the extra HS parameter n_HS.Comment: 26 pages, 6 figures, 2 tables; tomographic and Bayesian analyses updated and modified according to reviewer's suggestions; references update

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    Search for non-Gaussianity in pixel, harmonic and wavelet space: compared and combined

    Full text link
    We present a comparison between three approaches to test non-Gaussianity of cosmic microwave background data. The Minkowski functionals, the empirical process method and the skewness of wavelet coefficients are applied to maps generated from non-standard inflationary models and to Gaussian maps with point sources included. We discuss the different power of the pixel, harmonic and wavelet space methods on these simulated almost full-sky data (with Planck like noise). We also suggest a new procedure consisting of a combination of statistics in pixel, harmonic and wavelet space.Comment: Accepted for publication in PR
    corecore