43 research outputs found
Cosmology with Weak Lensing Surveys
Weak gravitational lensing surveys measure the distortion of the image of
distant sources due to the deflections of light rays by the fluctuations of the
gravitational potential along the line of sight. Since they probe the
non-linear matter power spectrum itself at medium redshift such surveys are
complimentary to both galaxy surveys (which follow stellar light) and cosmic
microwave background observations (which probe the linear regime at high
redshift). Ongoing CMB experiments such as WMAP and the future Planck satellite
mission will measure the standard cosmological parameters with unprecedented
accuracy. The focus of attention will then shift to understanding the nature of
dark matter and vacuum energy: several recent studies suggest that lensing is
the best method for constraining the dark energy equation of state. During the
next 5 year period ongoing and future weak lensing surveys such as the Joint
Dark Energy Mission (JDEM, e.g. SNAP) or the Large-aperture Synoptic Survey
Telescope (LSST) will play a major role in advancing our understanding of the
universe in this direction. In this review article we describe various aspects
of weak lensing surveys and how they can help us in understanding our universe.Comment: 15 pages, review article to appear in 2005 Triennial Issue of Phil.
Trans.
Weak gravitational lensing
In this brief review I consider the advances made in weak gravitational
lensing over the last 8 years, concentrating on the large scales - cosmic
shear. I outline the theoretical developments, observational status, and the
challenges which cosmic shear must overcome to realise its full potential.
Finally I consider the prospects for probing Dark Energy and extra-dimensional
gravity theories with future experiments.Comment: 6 pages. Short version of invited review at Moriond Cosmology 200
The Scale of Cosmic Isotropy
The most fundamental premise to the standard model of the universe, the
Cosmological Principle (CP), states that the large-scale properties of the
universe are the same in all directions and at all comoving positions.
Demonstrating this theoretical hypothesis has proven to be a formidable
challenge. The cross-over scale R_{iso} above which the galaxy distribution
becomes statistically isotropic is vaguely defined and poorly (if not at all)
quantified. Here we report on a formalism that allows us to provide an
unambiguous operational definition and an estimate of R_{iso}. We apply the
method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7,
finding that R_{iso}\sim 150h^{-1} Mpc. Besides providing a consistency test of
the Copernican principle, this result is in agreement with predictions based on
numerical simulations of the spatial distribution of galaxies in cold dark
matter dominated cosmological models.Comment: 15 pages, 4 figures, accepted by JCAP. The text matches the published
versio
The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models
In (Hansen et al. 2002) we presented a new approach for measuring
non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern,
based on the multivariate empirical distribution function of the spherical
harmonics a_lm of a CMB map. The present paper builds upon the same ideas and
proposes several improvements and extensions. More precisely, we exploit the
additional information on the random phases of the a_lm to provide further
tests based on the empirical distribution function. Also we take advantage of
the effect of rotations in improving the power of our procedures. The suggested
tests are implemented on physically motivated models of non-Gaussian fields;
Monte-Carlo simulations suggest that this approach may be very promising in the
analysis of non-Gaussianity generated by non-standard models of inflation. We
address also some experimentally meaningful situations, such as the presence of
instrumental noise and a galactic cut in the map.Comment: 15 pages, 6 figures, submitted to Phys. Rev.
Detection Limits for Super-Hubble Suppression of Causal Fluctuations
We investigate to what extent future microwave background experiments might
be able to detect a suppression of fluctuation power on large scales in flat
and open universe models. Such suppression would arise if fluctuations are
generated by causal processes, and a measurement of a small suppression scale
would be problematic for inflation models, but consistent with many defect
models. More speculatively, a measurement of a suppression scale of the order
of the present Hubble radius could provide independent evidence for a
fine-tuned inflation model leading to a low-density universe. We find that,
depending on the primordial power spectrum, a suppression scale modestly larger
than the visible Horizon can be detected, but that the detectability drops very
rapidly with increasing scale. For models with two periods of inflation, there
is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200
Could thermal fluctuations seed cosmic structure?
We examine the possibility that thermal, rather than quantum, fluctuations
are responsible for seeding the structure of our universe. We find that while
the thermalization condition leads to nearly Gaussian statistics, a
Harrisson-Zeldovich spectrum for the primordial fluctuations can only be
achieved in very special circumstances. These depend on whether the universe
gets hotter or colder in time, while the modes are leaving the horizon. In the
latter case we find a no-go theorem which can only be avoided if the
fundamental degrees of freedom are not particle-like, such as in string gases
near the Hagedorn phase transition. The former case is less forbidding, and we
suggest two potentially successful ``warming universe'' scenarios. One makes
use of the Phoenix universe, the other of ``phantom'' matter.Comment: minor corrections made, references added, matches the version
accepted to PR
Testing for non-Gaussianity of the cosmic microwave background in harmonic space: an empirical process approach
We present a new, model-independent approach for measuring non-Gaussianity of
the Cosmic Microwave Background (CMB) anisotropy pattern. Our approach is based
on the empirical distribution function of the normalized spherical harmonic
expansion coefficients a_lm of a nearly full-sky CMB map, like the ones
expected from forthcoming satellite experiments. Using a set of
Kolmogorov-Smirnov type tests, we check for Gaussianity and independency of the
a_lm. We test the method on two non-Gaussian toy-models of the CMB, one
generated in spherical harmonic space and one in pixel (real) space. We also
provide some rigorous results, possibly of independent interest, on the exact
distribution of the spherical harmonic coefficients normalized by an estimated
angular power spectrum.Comment: 29 pages, 7 figures, submitted to Phys. Rev.
Tomography from the Next Generation of Cosmic Shear Experiments for Viable f(R) Models
We present the cosmic shear signal predicted by two viable cosmological
models in the framework of modified-action f(R) theories. We use f(R) models
where the current accelerated expansion of the Universe is a direct consequence
of the modified gravitational Lagrangian rather than Dark Energy (DE), either
in the form of vacuum energy/cosmological constant or of a dynamical scalar
field (e.g. quintessence). We choose Starobinsky's (St) and Hu & Sawicki's (HS)
f(R) models, which are carefully designed to pass the Solar System gravity
tests. In order to further support - or rule out - f(R) theories as alternative
candidates to the DE hypothesis, we exploit the power of weak gravitational
lensing, specifically of cosmic shear. We calculate the tomographic shear
matrix as it would be measured by the upcoming ESA Cosmic Vision Euclid
satellite. We find that in the St model the cosmic shear signal is almost
completely degenerate with LCDM, but it is easily distinguishable in the HS
model. Moreover, we compute the corresponding Fisher matrix for both the St and
HS models, thus obtaining forecasts for their cosmological parameters. Finally,
we show that the Bayes factor for cosmic shear will definitely favour the HS
model over LCDM if Euclid measures a value larger than ~0.02 for the extra HS
parameter n_HS.Comment: 26 pages, 6 figures, 2 tables; tomographic and Bayesian analyses
updated and modified according to reviewer's suggestions; references update
Weak lensing, dark matter and dark energy
Weak gravitational lensing is rapidly becoming one of the principal probes of
dark matter and dark energy in the universe. In this brief review we outline
how weak lensing helps determine the structure of dark matter halos, measure
the expansion rate of the universe, and distinguish between modified gravity
and dark energy explanations for the acceleration of the universe. We also
discuss requirements on the control of systematic errors so that the
systematics do not appreciably degrade the power of weak lensing as a
cosmological probe.Comment: Invited review article for the GRG special issue on gravitational
lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on
three-point function and some references added. Matches the published versio
Search for non-Gaussianity in pixel, harmonic and wavelet space: compared and combined
We present a comparison between three approaches to test non-Gaussianity of
cosmic microwave background data. The Minkowski functionals, the empirical
process method and the skewness of wavelet coefficients are applied to maps
generated from non-standard inflationary models and to Gaussian maps with point
sources included. We discuss the different power of the pixel, harmonic and
wavelet space methods on these simulated almost full-sky data (with Planck like
noise). We also suggest a new procedure consisting of a combination of
statistics in pixel, harmonic and wavelet space.Comment: Accepted for publication in PR