2,370 research outputs found

    Long-Period Building Response to Earthquakes in the San Francisco Bay Area

    Get PDF
    This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area

    Real-time testing of the on-site warning algorithm in southern California and its performance during the July 29 2008 M_w5.4 Chino Hills earthquake

    Get PDF
    The real-time performance of the τ_c -P_d on-site early warning algorithm currently is being tested within the California Integrated Seismic Network (CISN). Since January 2007, the algorithm has detected 58 local earthquakes in southern California and Baja with moment magnitudes of 3.0 ≤ M_w ≤ 5.4. Combined with newly derived station corrections the algorithm allowed for rapid determination of moment magnitudes and Modified Mercalli Intensity (MMI) with uncertainties of ±0.5 and ±0.7 units, respectively. The majority of reporting delays ranged from 9 to 16 s. The largest event, the July 29 2008 M_w5.4 Chino Hills earthquake, triggered a total of 60 CISN stations in epicentral distances of up to 250 km. Magnitude predictions at these stations ranged from M_w4.4 to M_w6.5 with a median of M_w5.6. The closest station would have provided up to 6 s warning at Los Angeles City Hall, located 50 km to the west-northwest of Chino Hills

    Constraining fault constitutive behavior with slip and stress heterogeneity

    Get PDF
    We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these conditions following rupture, so that the stress field is compatible with the generation of aftershocks and facilitates heterogeneous slip in subsequent events. Our three-dimensional finite element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the dynamic stress drop (initial shear stress) and breakdown work (fracture energy) are spatially heterogeneous. In these models the breakdown work is on the order of MJ/m^2, which is comparable to the radiated energy. These conditions producing slip heterogeneity also tend to produce narrower slip pulses independent of a slip rate dependence in the fault constitutive model. An alternative mechanism for generating these confined slip pulses appears to be fault constitutive models that have a stronger rate dependence, which also makes them difficult to implement in numerical models. We hypothesize that self-consistent ruptures could also be produced by very narrow slip pulses propagating in a self-sustaining heterogeneous stress field with breakdown work comparable to fracture energy estimates of kJ/M^2

    Results of Millikan Library Forced Vibration Testing

    Get PDF
    This report documents an investigation into the dynamic properties of Millikan Library under forced excitation. On July 10, 2002, we performed frequency sweeps from 1 Hz to 9.7 Hz in both the East-West (E-W) and North-South (N-S) directions using a roof level vibration generator. Natural frequencies were identified at 1.14 Hz (E-W fundamental mode), 1.67 Hz (N-S fundamental mode), 2.38 Hz (Torsional fundamental mode), 4.93 Hz (1st E-Wovertone), 6.57 Hz (1st Torsional overtone), 7.22 Hz (1st N-S overtone), and at 7.83 Hz (2nd E-Wovertone). The damping was estimated at 2.28% for the fundamental E-W mode and 2.39% for the N-S fundamental mode. On August 28, 2002, a modal analysis of each natural frequency was performed using the dense instrumentation network located in the building. For both the E-W and N-S fundamental modes, we observe a nearly linear increase in displacement with height, except at the ground floor which appears to act as a hinge. We observed little basement movement for the E-W mode, while in the N-S mode 30% of the roof displacement was due to basement rocking and translation. Both the E-W and N-S fundamental modes are best modeled by the first mode of a theoretical bending beam. The higher modes are more complex and not well represented by a simple structural system

    Aftershock Accelerograms Recorded on a Temporary Array

    Get PDF
    We recovered 52 timed analog accelerograms from 25 aftershocks of the 1979 Imperial Valley earthquake, between 3:33p.m. P.d.t. October 16 and 5:43 a.m. October 31. The largest aftershock that we recorded (M_L =4.9) occurred at 4:16p.m. October 16. This aftershock triggered eight accelerographs; preliminary estimates of epicentral distance range from 7 to 35 km. The data from this aftershock may be useful for study of both source and wave-propagation phenomena in the Imperial Valley

    Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures

    Get PDF
    We examine the long-period near-source ground motions from simulations of M 7.4 events on a strike-slip fault using kinematic ruptures with rupture speeds that range from subshear speeds through intersonic speeds to supersonic speeds. The strong along-strike shear-wave directivity present in scenarios with subshear rupture speeds disappears in the scenarios with ruptures propagating faster than the shear-wave speed. Furthermore, the maximum horizontal displacements and velocities rotate from generally fault-perpendicular orientations at subshear rupture speeds to generally fault-parallel orientations at supersonic rupture speeds. For rupture speeds just above the shear-wave speed, the orientations are spatially heterogeneous as a result of the random nature of our assumed slip model. At locations within a few kilometers of the rupture, the time histories of the polarization of the horizontal motion provide a better diagnostic with which to gauge the rupture speed than the orientation of the peak motion. Subshear ruptures are associated with significant fault-perpendicular motion before fault-parallel motion close to the fault; supershear ruptures are associated with fault-perpendicular motion after significant fault-parallel motion. Consistent with previous studies, we do not find evidence for prolonged supershear rupture in the long-period (>2 sec) ground motions from the 1979 Imperial Valley earthquake. However, we are unable to resolve the issue of whether a limited portion of the rupture (approximately 10 km in length) propagated faster than the shear-wave speed. Additionally, a recording from the 2002 Denali fault earthquake does appear to be qualitatively consistent with locally supershear rupture. Stronger evidence for supershear rupture in earthquakes may require very dense station coverage in order to capture these potentially distinguishing traits

    Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System

    Get PDF
    Rapid detection of local and regional earthquakes and issuance of fast alerts for impending shaking is considered beneficial to save lives, reduce losses, and shorten recovery times after destructive events (Allen et al., 2009). Over the last two decades, several countries have built operational earthquake early warning (EEW) systems, including Japan (Hoshiba et al., 2008), Mexico (Espinosa-Aranda et al., 1995), Romania (Mărmureanu et al., 2011), Turkey (Erdik et al., 2003), Taiwan (Hsiao et al., 2011), and China (Peng et al., 2011). Other countries, such as the United States (Böse, Allen, et al., 2013), Italy (Satriano et al., 2011), and Switzerland (Behr et al., 2015), are currently developing systems or evaluating algorithms in their seismic real-time networks

    Detecting failure events in buildings: a numerical and experimental analysis

    Get PDF
    A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of waveform similarities to one of the prerecorded events. This study addresses whether a set of Green’s functions in response to an impulsive force load can be used to approximate the response of the structure to a localized failure event such as a brittle weld fracture. Specifically, we investigate whether prerecorded Green’s functions can be used to determine the absolute time and location of a localized failure event in a building. We also seek to differentiate between sources such as a weld fracture that are structurally damaging and sources such as falling or colliding furniture and other non-structural elements that do not contribute to structural failure. This is explored numerically by comparing the dynamic response of a finite-element cantilevered beam model structure to a variety of loading mechanisms. A finite-element method is employed to determine the behavior of the resulting elastic waves and to obtain a general understanding of the structural response

    Ground failure along the New River caused by the October 1979 Imperial Valley earthquake sequence

    Get PDF
    We recognized a number of ground failures along the south bank of the New River north of Brawley, California, following the 15 October 1979 Imperial Valley, California, earthquake sequence. The zone includes a large pond and numerous sand boils, apparently caused by liquefaction, near the Del Rio Country Club. These ground failures, together with failures at the New River bridge west of Brawley and at Wiest Lake, form a discontinuous zone 10 km long. While this zone appears to coincide with the aftershocks following the 16 October 1979, M_L 5.8, Brawley earthquake (the largest aftershock of the Imperial Valley earthquake), a cause and effect relationship cannot be demonstrated. No evidence of tectonic surface faulting could be found
    • …
    corecore