917 research outputs found

    Orion\u27s Bar: Physical Conditions Across the Definitive H\u3csup\u3e+\u3c/sup\u3e/H\u3csup\u3e0\u3c/sup\u3e/H\u3csub\u3e2\u3c/sub\u3e Interface

    Get PDF
    Previous work has shown the Orion Bar to be an interface between ionized and molecular gas, viewed roughly edge-on, which is excited by the light from the Trapezium cluster. Much of the emission from any star-forming region will originate from such interfaces, so the Bar serves as a foundation test of any emission model. Here we combine X-ray, optical, infrared (IR), and radio data sets to derive emission spectra along the transition from H+ to H0 to H2 regions. We then reproduce the spectra of these layers with a simulation that simultaneously accounts for the detailed microphysics of the gas, the grains, and molecules, especially H2 and CO. The magnetic field, observed to be the dominant pressure in another region of the Orion Nebula, is treated as a free parameter, along with the density of cosmic rays. Our model successfully accounts for the optical, IR, and radio observations across the Bar by including a significant magnetic pressure and also heating by an excess density of cosmic rays, which we suggest is due to cosmic rays being trapped in the compressed magnetic field. In the Orion Bar, as we had previously found in M17, momentum carried by radiation and winds from the newly formed stars pushes back and compresses the surrounding gas. There is a rough balance between outward momentum in starlight and the total pressure in atomic and molecular gas surrounding the H+ region. If the gas starts out with a weak magnetic field, the starlight from a newly formed cluster will push back the gas and compress the gas, magnetic field, and cosmic rays until magnetic pressure becomes an important factor

    Magnetic Field Effects on the Head Structure of Protostellar Jets

    Get PDF
    We present the results of 3-D SPMHD numerical simulations of supermagnetosonic, overdense, radiatively cooling jets. Two initial magnetic configurations are considered: (i) a helical and (ii) a longitudinal field. We find that magnetic fields have important effects on the dynamics and structure of radiative cooling jets, especially at the head. The presence of a helical field suppresses the formation of the clumpy structure which is found to develop at the head of purely hydrodynamical jets. On the other hand, a cooling jet embedded in a longitudinal magnetic field retains clumpy morphology at its head. This fragmented structure resembles the knotty pattern commonly observed in HH objects behind the bow shocks of HH jets. This suggests that a strong (equipartition) helical magnetic field configuration is ruled out at the jet head. Therefore, if strong magnetic fields are present, they are probably predominantly longitudinal in those regions. In both magnetic configurations, we find that the confining pressure of the cocoon is able to excite short-wavelength MHD K-H pinch modes that drive low-amplitude internal shocks along the beam. These shocks are not strong however, and it likely that they could only play a secondary role in the formation of the bright knots observed in HH jets.Comment: 14 pages, 2 Gif figures, uses aasms4.sty. Also available on the web page http://www.iagusp.usp.br/preprints/preprint.html. To appear in The Astrophysical Journal Letter

    3-D Photoionization Structure and Distances of Planetary Nebulae II. Menzel 1

    Full text link
    We present the results of a spatio-kinematic study of the planetary nebula Menzel 1 using spectro-photometric mapping and a 3-D photoionization code. We create several 2-D emission line images from our long-slit spectra, and use these to derive the line fluxes for 15 lines, the Halpha/Hbeta extinction map, and the [SII] line ratio density map of the nebula. We use our photoionization code constrained by these data to derive the three-dimensional nebular structure and ionizing star parameters of Menzel 1 by simultaneously fitting the integrated line intensities, the density map, and the observed morphologies in several lines, as well as the velocity structure. Using theoretical evolutionary tracks of intermediate and low mass stars, we derive a mass for the central star of 0.63+-0.05 Msolar. We also derive a distance of 1050+_150 pc to Menzel 1.Comment: To be published in ApJ of 10th February 2005. 12 figure

    On the Hydrodynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence

    Full text link
    The effect of smooth cloud boundaries on the interaction of steady planar shock waves with interstellar clouds is studied using a high-resolution local AMR technique with a second-order accurate axisymmetric Godunov hydrodynamic scheme. A 3D calculation is also done to confirm the results of the 2D ones. We consider an initially spherical cloud whose density distribution is flat near the cloud center and has a power-law profile in the cloud envelope. When an incident shock is transmitted into a smooth cloud, velocity gradients in the cloud envelope steepen the smooth density profile at the upstream side, resulting in a sharp density jump having an arc-like shape. Such a ``slip surface'' forms immediately when a shock strikes a cloud with a sharp boundary. For smoother boundaries, the formation of slip surface and therefore the onset of hydrodynamic instabilities are delayed. Since the slip surface is subject to the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, the shocked cloud is eventually destroyed in ∌3−10\sim 3-10 cloud crushing times. After complete cloud destruction, small blobs formed by fragmentation due to hydrodynamic instabilities have significant velocity dispersions of the order of 0.1 vbv_b, where vbv_b is the shock velocity in the ambient medium. This suggests that turbulent motions generated by shock-cloud interaction are directly associated with cloud destruction. The interaction of a shock with a cold HI cloud should lead to the production of a spray of small HI shreds, which could be related to the small cold clouds recently observed by Stanimirovic & Heiles (2005). The linewidth-size relation obtained from our 3D simulation is found to be time-dependent. A possibility for gravitational instability triggered by shock compression is also discussed.Comment: 62 pages, 16 figures, submitted to Ap

    Is Thermal Instability Significant in Turbulent Galactic Gas?

    Full text link
    We investigate numerically the role of thermal instability (TI) as a generator of density structures in the interstellar medium (ISM), both by itself and in the context of a globally turbulent medium. Simulations of the instability alone show that the condenstion process which forms a dense phase (``clouds'') is highly dynamical, and that the boundaries of the clouds are accretion shocks, rather than static density discontinuities. The density histograms (PDFs) of these runs exhibit either bimodal shapes or a single peak at low densities plus a slope change at high densities. Final static situations may be established, but the equilibrium is very fragile: small density fluctuations in the warm phase require large variations in the density of the cold phase, probably inducing shocks into the clouds. This result suggests that such configurations are highly unlikely. Simulations including turbulent forcing show that large- scale forcing is incapable of erasing the signature of the TI in the density PDFs, but small-scale, stellar-like forcing causes erasure of the signature of the instability. However, these simulations do not reach stationary regimes, TI driving an ever-increasing star formation rate. Simulations including magnetic fields, self-gravity and the Coriolis force show no significant difference between the PDFs of stable and unstable cases, and reach stationary regimes, suggesting that the combination of the stellar forcing and the extra effective pressure provided by the magnetic field and the Coriolis force overwhelm TI as a density-structure generator in the ISM. We emphasize that a multi-modal temperature PDF is not necessarily an indication of a multi-phase medium, which must contain clearly distinct thermal equilibrium phases.Comment: 18 pages, 11 figures. Submitted to Ap

    A New View of the Circumstellar Environment of SN 1987A

    Full text link
    We summarize the analysis of a uniform set of both previously-known and newly-discovered scattered-light echoes, detected within 30" of SN 1987A in ten years of optical imaging, and with which we have constructed the most complete three-dimensional model of the progenitor's circumstellar environment. Surrounding the SN is a richly-structured bipolar nebula. An outer, double-lobed ``peanut,'' which we believe is the contact discontinuity between the red supergiant and main sequence winds, is a prolate shell extending 28 ly along the poles and 11 ly near the equator. Napoleon's Hat, previously believed to be an independent structure, is the waist of this peanut, which is pinched to a radius of 6 ly. Interior, the innermost circumstellar material lies along a cylindrical hourglass, 1 ly in radius and 4 ly long, which connects to the peanut by a thick equatorial disk. The nebulae are inclined 41o south and 8o east of the line of sight, slightly elliptical in cross section, and marginally offset west of the SN. The 3-D geometry of the three circumstellar rings is studied, suggesting the equatorial ring is elliptical (b/a<0.98), and spatially offset in the same direction as the hourglass. Dust-scattering models suggest that between the hourglass and bipolar lobes: the gas density drops from 1--3 cm^{-3} to >0.03 cm^{-3}; the maximum dust-grain size increases from ~0.2 micron to 2 micron; and the Si:C dust ratio decreases. The nebulae have a total mass of ~1.7 Msun, yielding a red-supergiant mass loss around 5*10^{-6} Msun yr^{-1}.Comment: Accepted for publication in ApJ 2/14/05. 16 pages in emualteapj forma
    • 

    corecore