25,898 research outputs found

    Superlattice Nanowire Pattern Transfer (SNAP)

    Get PDF
    During the past 15 years or so, nanowires (NWs) have emerged as a new and distinct class of materials. Their novel structural and physical properties separate them from wires that can be prepared using the standard methods for manufacturing electronics. NW-based applications that range from traditional electronic devices (logic and memory) to novel biomolecular and chemical sensors, thermoelectric materials, and optoelectronic devices, all have appeared during the past few years. From a fundamental perspective, NWs provide a route toward the investigation of new physics in confined dimensions. Perhaps the most familiar fabrication method is the vapor−liquid−solid (VLS) growth technique, which produces semiconductor nanowires as bulk materials. However, other fabrication methods exist and have their own advantages. In this Account, I review a particular class of NWs produced by an alternative method called superlattice nanowire pattern transfer (SNAP). The SNAP method is distinct from other nanowire preparation methods in several ways. It can produce large NW arrays from virtually any thin-film material, including metals, insulators, and semiconductors. The dimensions of the NWs can be controlled with near-atomic precision, and NW widths and spacings can be as small as a few nanometers. In addition, SNAP is almost fully compatible with more traditional methods for manufacturing electronics. The motivation behind the development of SNAP was to have a general nanofabrication method for preparing electronics-grade circuitry, but one that would operate at macromolecular dimensions and with access to a broad materials set. Thus, electronics applications, including novel demultiplexing architectures; large-scale, ultrahigh-density memory circuits; and complementary symmetry nanowire logic circuits, have served as drivers for developing various aspects of the SNAP method. Some of that work is reviewed here. As the SNAP method has evolved into a robust nanofabrication method, it has become an enabling tool for the investigation of new physics. In particular, the application of SNAP toward understanding heat transport in low-dimensional systems is discussed. This work has led to the surprising discovery that Si NWs can serve as highly efficient thermoelectric materials. Finally, we turn toward the application of SNAP to the investigation of quasi-one-dimensional (quasi-1D) superconducting physics in extremely high aspect ratio Nb NWs

    Comment on 'a global map of human impact on marine ecosystems'

    Get PDF
    Halpern et al. (Reports, 15 February 2008, p. 948) integrated spatial data on 17 drivers of change in the oceans to map the global distribution of human impact. Although fishery catches are a dominant driver, the data reflect activity while impacts occur at different space and time scales. Failure to account for this spatial disconnection could lead to potentially misleading conclusions

    Molecular Electronics

    Get PDF
    Molecular electronics describes the field in which molecules are utilized as the active (switching, sensing, etc.) or passive (current rectifiers, surface passivants) elements in electronic devices. This review focuses on experimental aspects of molecular electronics that researchers have elucidated over the past decade or so and that relate to the fabrication of molecular electronic devices in which the molecular components are readily distinguished within the electronic properties of the device. Materials, fabrication methods, and methods for characterizing electrode materials, molecular monolayers, and molecule/electrode interfaces are discussed. A particular focus is on devices in which the molecules or molecular monolayer are sandwiched between two immobile electrodes. Four specific examples of such devices, in which the electron transport characteristics reflect distinctly molecular properties, are discussed

    The structure of the C4 cluster radical

    Get PDF
    The first infrared spectrum of gas phase, jet-cooled C4 has been measured by high resolution diode laser absorption spectroscopy. Twelve rovibrational transitions are assigned to the nu3(sigmau) antisymmetric stretch of linear 3Sigma - g C4. No evidence is observed for the bent structure of triplet C4 recently observed in a matrix study by Cheung and Graham [J. Chem. Phys. 91, 6664 (1989)]. Indeed, the measured band origin (1548.9368(21) cm^–1) and effective ground state C–C bond length [1.304 31(21)A] are consistent with several ab initio predictions of a rigid, linear, cumulenic structure for this cluster radical

    The C9 cluster: Structure and infrared frequencies

    Get PDF
    The high resolution infrared spectrum of the C9 cluster has been measured in direct absorption by infrared diode laser spectroscopy of a pulsed supersonic carbon cluster jet. Fifty-one rovibrational transitions have been assigned to the nu6 (sigmau ) antisymmetric stretch fundamental of the 1Sigma + 9 linear ground state of C9. The measured rotational constant [429.30(50) MHz] is in good agreement with ab initio calculations and indicates an effective bond length of 1.278 68(75) Å, consistent with cumulenic bonding in this cluster. Several perturbations are observed in the upper state, and the upper- and lower-state centrifugal distortion constants are observed to be anomolously large, evidencing a high degree of Coriolis mixing of the normal modes

    The distribution and moments of the error term in the Dirichlet divisor problem

    Get PDF
    This paper will consider results about the distribution and moments of some of the well known error terms in analytic number theory. To focus attention we begin by considering the error term ∆(x) in the Dirichlet divisor problem, which is defined a

    Linear relations amongst sums of two squares

    Get PDF

    The density of zeros of forms for which weak approximation fails

    Get PDF
    The weak approximation principal fails for the forms x3 + y3 + z3 = kw3, when k = 2 or 3. The question therefore arises as to what asymptotic density one should predict for the rational zeros of these forms. Evidence, both numerical and theoretical, is presented, which suggests that, for forms of the above type, the product of the local densities still gives the correct global density. Let f(x1,..., xn) ∈ Q[x1,..., xn] be a rational form. We say that f satisfies the weak approximation principle if the following condition holds. (WA): Given an ε> 0 and a finite set S of places of Q, and zeros (xν1,..., x ν n) ∈ Qnν of the form f, we can find a rational zero (x1,..., xn) of f such that, |xi − xνi |ν < ε, for 1 ≤ i ≤ n and ν ∈ S. Alternatively, we may write X(K) for the points on the hypersurface f = 0 whose coordinates lie in the field K, and consider the produc
    corecore