23 research outputs found

    Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing

    Get PDF
    Early Xenopus embryos are large, and during the egg to gastrula stages, when there is little extracellular matrix, the cytoskeletons of the individual blastomeres are thought to maintain their spherical architecture and provide scaffolding for the cellular movements of gastrulation. We showed previously that depletion of plakoglobin protein during the egg to gastrula stages caused collapse of embryonic architecture. Here, we show that this is due to loss of the cortical actin skeleton after depletion of plakoglobin, whereas the microtubule and cytokeratin skeletons are still present. As a functional assay for the actin skeleton, we show that wound healing, an actin-based behavior in embryos, is also abrogated by plakoglobin depletion. Both wound healing and the amount of cortical actin are enhanced by overexpression of plakoglobin. To begin to identify links between plakoglobin and the cortical actin polymerization machinery, we show here that the Rho family GTPase cdc42, is required for wound healing in the Xenopus blastula. Myc-tagged cdc42 colocalizes with actin in purse-strings surrounding wounds. Overexpression of cdc42 dramatically enhances wound healing, whereas depletion of maternal cdc42 mRNA blocks it. In combinatorial experiments we show that cdc42 cannot rescue the effects of plakoglobin depletion, showing that plakoglobin is required for cdc42-mediated cortical actin assembly during wound healing. However, plakoglobin does rescue the effect of cdc42 depletion, suggesting that cdc42 somehow mediates the distribution or function of plakoglobin. Depletion of α-catenin does not remove the cortical actin skeleton, showing that plakoglobin does not mediate its effect by its known linkage through α-catenin to the actin skeleton. We conclude that in Xenopus, the actin skeleton is a major determinant of cell shape and overall architecture in the early embryo, and that plakoglobin plays an essential role in the assembly, maintenance, or organization of this cortical actin

    The role of maternal CREB in early embryogenesis of Xenopus laevis

    Get PDF
    AbstractIn Xenopus embryos, body patterning and cell specification are initiated by transcription factors, which are themselves transcribed during oogenesis, and their mRNAs are stored for use after fertilization. We have previously shown that the T-box transcription factor VegT is both necessary and sufficient to initiate transcription of all endoderm, and most mesoderm genes. In the absence of maternal VegT, no mesodermal organs (including the heart) or endodermal organs form. A second maternal transcription factor XTcf3 acts as a global repressor of transcription of dorsal genes, whose repression is inactivated on the dorsal side by a maternally encoded Wnt signaling pathway. In the absence of β-catenin, no mesodermal or endodermal organs form. We show here that the maternally encoded transcription factor CREB is also essential for development. It is required for the initiation of expression of several mesodermal genes, including Xbra, Xcad2, and -3 and also regulates the cardiogenic gene Nkx 2-5. We show that maternal CREB-depleted embryos develop gastrulation defects that are rescued by the reintroduction of activated CREB mRNA. We conclude that maternal CREB must be added to the list of essential maternal transcription factors regulating cell specification in the early embryo

    Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes

    Get PDF
    AbstractWnt signaling pathways have essential roles in developing embryos and adult tissue, and alterations in their function are implicated in many disease processes including cancers. The major nuclear transducers of Wnt signals are the Tcf/LEF family of transcription factors, which have binding sites for both the transcriptional co-repressor groucho, and the co-activator β-catenin. The early Xenopus embryo expresses three maternally inherited Tcf/LEF mRNAs, and their relative roles in regulating the expression of Wnt target genes are not understood. We have addressed this by using antisense oligonucleotides to deplete maternal XTcf1 and XTcf4 mRNAs in oocytes. We find that XTcf1 represses expression of Wnt target genes ventrally and laterally, and activates their expression dorsally. Double depletions of XTcf1 and XTcf3 suggest that they act cooperatively to repress Wnt target genes ventrally. In contrast, XTcf4 has no repressive role but is required to activate expression of Xnr3 and chordin in organizer cells at the gastrula stage. This work provides evidence for distinct roles for XTcfs in regulating Wnt target gene expression
    corecore