41 research outputs found
Sum rule for the backward spin polarizability of the nucleon from a backward dispersion relation
A new sum rule for , the backward spin polarizability of the
nucleon, is derived from a backward-angle dispersion relation. Taking into
account single- and multi-pion photoproduction in the s-channel up to the
energy 1.5 GeV and resonances in the t-channel with mass below 1.5 GeV, it is
found for the proton and neutron that = -39.5 +/- 2.4 and
= 52.5 +/- 2.4, respectively, in units of 10^{-4} fm^4.Comment: 10 pages, 1 figure, revtex. Submitted to Phys. Lett.
Z' Decays into Four Fermions
If a new is discovered with a mass at LHC/SSC, its (rare)
decays into two charged leptons plus missing transverse energy will probe the
coupling to the lepton doublet and to , allowing
further discrimination among extended electroweak models.Comment: 9 pages plus 1 figure (not included but available), UG-FT-22/9
Higgs production and decay: Analytic results at next-to-leading order QCD
The virtual two-loop corrections for Higgs production in gluon fusion are
calculated analytically in QCD for arbitrary Higgs and quark masses. Both
scalar and pseudo-scalar Higgs bosons are considered. The results are obtained
by expanding the known one-dimensional integral representation in terms of
m_H/m_q, and matching it with a suitably chosen ansatz of Harmonic
Polylogarithms. This ansatz is motivated by the known analytic result for the
Higgs decay rate into two photons. The method also allows us to check this
result and to extend it to the pseudo-scalar decay rate.Comment: LaTeX, 16 pages, 5 figures (8 eps-files
Virtual O(\a_s) corrections to the inclusive decay
We present in detail the calculation of the O(\a_s) virtual corrections to
the matrix element for b \to s \g. Besides the one-loop virtual corrections
of the electromagnetic and color dipole operators and , we include
the important two-loop contribution of the four-Fermi operator . By
applying the Mellin-Barnes representation to certain internal propagators, the
result of the two-loop diagrams is obtained analytically as an expansion in
. These results are then combined with existing O(\a_s)
Bremsstrahlung corrections in order to obtain the inclusive rate for B \to X_s
\g. The new contributions drastically reduce the large renormalization scale
dependence of the leading logarithmic result. Thus a very precise Standard
Model prediction for this inclusive process will become possible once also the
corrections to the Wilson coefficients are available.Comment: 29 pages, uses epsfig.sty, 12 postscript figures include
Predictive powers of chiral perturbation theory in Compton scattering off protons
We study low-energy nucleon Compton scattering in the framework of baryon
chiral perturbation theory (BPT) with pion, nucleon, and (1232)
degrees of freedom, up to and including the next-to-next-to-leading order
(NNLO). We include the effects of order , and , with
MeV the -resonance excitation energy. These are
all "predictive" powers in the sense that no unknown low-energy constants enter
until at least one order higher (i.e, ). Estimating the theoretical
uncertainty on the basis of natural size for effects, we find that
uncertainty of such a NNLO result is comparable to the uncertainty of the
present experimental data for low-energy Compton scattering. We find an
excellent agreement with the experimental cross section data up to at least the
pion-production threshold. Nevertheless, for the proton's magnetic
polarizability we obtain a value of fm, in
significant disagreement with the current PDG value. Unlike the previous
PT studies of Compton scattering, we perform the calculations in a
manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB)
expansion. The difference between the lowest order HBPT and BPT
results for polarizabilities is found to be appreciable. We discuss the chiral
behavior of proton polarizabilities in both HBPT and BPT with the
hope to confront it with lattice QCD calculations in a near future. In studying
some of the polarized observables, we identify the regime where their naive
low-energy expansion begins to break down, thus addressing the forthcoming
precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements