41 research outputs found

    Sum rule for the backward spin polarizability of the nucleon from a backward dispersion relation

    Get PDF
    A new sum rule for γπ\gamma_\pi, the backward spin polarizability of the nucleon, is derived from a backward-angle dispersion relation. Taking into account single- and multi-pion photoproduction in the s-channel up to the energy 1.5 GeV and resonances in the t-channel with mass below 1.5 GeV, it is found for the proton and neutron that [γπ]p[\gamma_\pi]_p = -39.5 +/- 2.4 and [γπ]n[\gamma_\pi]_n = 52.5 +/- 2.4, respectively, in units of 10^{-4} fm^4.Comment: 10 pages, 1 figure, revtex. Submitted to Phys. Lett.

    Z' Decays into Four Fermions

    Full text link
    If a new ZZ' is discovered with a mass 1 TeV\sim 1 \ TeV at LHC/SSC, its (rare) decays into two charged leptons plus missing transverse energy will probe the ZZ' coupling to the lepton doublet (ν,e)L(\nu,e)_L and to W+WW^+W^-, allowing further discrimination among extended electroweak models.Comment: 9 pages plus 1 figure (not included but available), UG-FT-22/9

    Higgs production and decay: Analytic results at next-to-leading order QCD

    Full text link
    The virtual two-loop corrections for Higgs production in gluon fusion are calculated analytically in QCD for arbitrary Higgs and quark masses. Both scalar and pseudo-scalar Higgs bosons are considered. The results are obtained by expanding the known one-dimensional integral representation in terms of m_H/m_q, and matching it with a suitably chosen ansatz of Harmonic Polylogarithms. This ansatz is motivated by the known analytic result for the Higgs decay rate into two photons. The method also allows us to check this result and to extend it to the pseudo-scalar decay rate.Comment: LaTeX, 16 pages, 5 figures (8 eps-files

    Virtual O(\a_s) corrections to the inclusive decay bsγb \to s \gamma

    Full text link
    We present in detail the calculation of the O(\a_s) virtual corrections to the matrix element for b \to s \g. Besides the one-loop virtual corrections of the electromagnetic and color dipole operators O7O_7 and O8O_8, we include the important two-loop contribution of the four-Fermi operator O2O_2. By applying the Mellin-Barnes representation to certain internal propagators, the result of the two-loop diagrams is obtained analytically as an expansion in mc/mbm_c/m_b. These results are then combined with existing O(\a_s) Bremsstrahlung corrections in order to obtain the inclusive rate for B \to X_s \g. The new contributions drastically reduce the large renormalization scale dependence of the leading logarithmic result. Thus a very precise Standard Model prediction for this inclusive process will become possible once also the corrections to the Wilson coefficients are available.Comment: 29 pages, uses epsfig.sty, 12 postscript figures include

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    The STAR experiment at the relativistic heavy ion collider

    Full text link

    Advanced Computing Methods

    No full text
    corecore