50 research outputs found

    The Roles of ADAMs Family Proteinases in Skin Diseases

    Get PDF
    A disintegrin and metalloproteinases (ADAMs) are members of a new gene family of transmembrane and secreted proteins, which belong to the zinc proteinase superfamily. These molecules are involved in various biological events such as cell adhesion, cell fusion, cell migration, membrane protein shedding, and proteolysis. Growing evidence now attests to the potential involvement of ADAMs proteinases in diverse processes such as skin wound healing, inflammation, pigmentation, tumor development, cell proliferation, and metastasis. This paper focuses on the roles of ADAMs proteinases in a wide variety of skin diseases

    Effects of Cosmetic Formulations Containing Hydroxyacids on Sun-Exposed Skin: Current Applications and Future Developments

    Get PDF
    This paper describes recent data on the effects of various skin formulations containing hydroxyacids (HAs) and related products on sun-exposed skin. The most frequently used classes of these products, such as α- and β-hydroxyacids, polyhydroxy acids, and bionic acids, are reviewed, and their application in cosmetic formulations is described. Special emphasis is devoted to the safety evaluation of these formulations, particularly on the effects of their prolonged use on sun-exposed skin. We also discuss the important contribution of cosmetic vehicles in these types of studies. Data on the effects of HAs on melanogenesis and tanning are also included. Up-to-date methods and techniques used in those explorations, as well as selected future developments in the cosmetic area, are presented

    Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase

    Get PDF
    Tyrosinase, a copper-containing glycoprotein, is the rate-limiting enzyme critical for melanin biosynthesis in specialized organelles termed melanosomes that are produced only by melanocytic cells. Inhibitors of tyrosinase activity have long been sought as therapeutic means to treat cutaneous hyperpigmentary disorders. Multiple potential approaches exist that could control pigmentation via the regulation of tyrosinase activity, for example: the transcription of its messenger RNA, its maturation via glycosylation, its trafficking to melanosomes, as well as modulation of its catalytic activity and/or stability. However, relatively little attention has been paid to regulating pigmentation via the stability of tyrosinase, which depends on its processing and maturation in the endoplasmic reticulum and Golgi, its delivery to melanosomes and its degradation via the ubiquitin-proteasome pathway and/or the endosomal/lysosomal system. Recently, it has been shown that carbohydrate modification, molecular chaperone engagement, and ubiquitylation all play pivotal roles in regulating the degradation/stability of tyrosinase. While such processes affect virtually all proteins, such effects on tyrosinase have immediate and dramatic consequences on pigmentation. In this review, we classify melanogenic inhibitory factors in terms of their modulation of tyrosinase function and we summarize current understanding of how the quality control of tyrosinase processing impacts its stability and melanogenic activity

    Milestones in Melanocytes/Melanogenesis

    No full text
    corecore