237 research outputs found
Interfaces with a single growth inhomogeneity and anchored boundaries
The dynamics of a one dimensional growth model involving attachment and
detachment of particles is studied in the presence of a localized growth
inhomogeneity along with anchored boundary conditions. At large times, the
latter enforce an equilibrium stationary regime which allows for an exact
calculation of roughening exponents. The stochastic evolution is related to a
spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of
late stages. For vanishing gaps the interface can exhibit a slow morphological
transition followed by a change of scaling regimes which are studied
numerically. Instead, a faceting dynamics arises for gapful situations.Comment: REVTeX, 11 pages, 9 Postscript figure
Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media
We examine the dynamics of an elastic string interacting with quenched
disorder driven perpendicular and parallel to the string. We show that the
string is the most disordered at the depinning transition but with increasing
drive partial ordering is regained. For low drives the noise power is high and
we observe a 1/f^2 noise signature crossing over to a white noise character
with low power at higher drives. For the parallel driven moving string there is
a finite transverse critical depinning force with the depinning transition
occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
Golimumab in refractory uveitis related to spondyloarthritis. Multicenter study of 15 patients
Objective: To assess the efficacy of golimumab (GLM) in refractory uveitis associated to spondyloarthritis (SpA). Methods: Multicenter study of SpA-related uveitis refractory to at least one immunosuppressive drug. The main outcome variables were degree of anterior and posterior chamber inflammation, visual acuity, and macular thickness. Results: Fifteen patients (13 men/2 women; 18 affected eyes; mean age 39±6 years) were evaluated. The underlying SpA subtypes were ankylosing spondylitis (n=8), psoriatic arthritis (n=6) and non-radiographic axial SpA (n=1). The ocular involvement patterns were recurrent anterior uveitis in 8 patients and chronic anterior uveitis in 7. Before GLM they have received methotrexate (n=13), sulfasalazine (n=6), pulses of methylprednisolone (n=4), azathioprine (n=3), leflunomide (n=2) and cyclosporine (n=1). Ten of them had also been treated with TNF-? blockers; etanercept (n=7), adalimumab (n=7), infliximab (n=6), and certolizumab (n=1). GLM was given at the standard dose (50 mg/sc/monthly) as monotherapy (n=7) or in combination with conventional immunosuppressive drugs (n=8), mainly methotrexate. Most patients had rapid and progressive improvement of intraocular inflammation parameters. The median number of cells in the anterior chamber at 2 years (0 [0-0]) was significantly reduced compared to baseline findings (1 [0-3]); p=0.04). The mean best corrected visual acuity value also improved (0.84±0.3 at 2 years versus 0.62±0.3 at baseline; p=0.03). Only minor side effects were observed after a mean follow-up of 23±7 months. Conclusions: Our results indicate that GLM may be a useful therapeutic option in refractory SpA-related uveitis
- âŠ