2,070 research outputs found

    Effect of aileron displacement on wing characteristics

    Get PDF
    The effect of aileron displacement on wing characteristics has been investigated for the Clark Y and the U.S.A. 27 wing sections equipped with rectangular ailerons. The airfoils, rectangular in plan, and having a 10 inch chord and 60 inch span, were mounted on a model fuselage

    Rolling, yawing, and hinge moments produced by rectangular ailerons

    Get PDF
    Ailerons described in references 1, 2, and 3, are summarized in the form of empirical equations which relate the aileron dimensions and displacements to the rolling, yawing, and hinge moments for pitch angles of 0 and 12 degrees, corresponding to angles of attack of the wings of 4 and 16 degrees, respectively

    Effect of Variation of Chord and Span of Ailerons on Rolling and Yawing Moments in Level Flight

    Get PDF
    This report presents the results of an investigation of the rolling and yawing moments due to ailerons of various chords and spans on two airfoils having the Clark Y and U. S. A. 27 wing sections. Some attention is devoted to a study of the effect of scale on rolling and yawing moments and to the effect of slightly rounding the wing tips. The results apply to level flight with the wing chord set at an angle of attack of +4 degrees and to conditions of zero pitch, zero yaw, and zero roll of the airplane. It is planned later to extend the investigation to other attitudes for monoplane and biplane combinations. The work was conducted in the 10 foot wind tunnel of the Bureau of Standards on models of 60-inch span and 10-inch chord. (author

    Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    Get PDF
    It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey. The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 muG) and ordered (3 muG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.Comment: 16 page

    The radial variation of HI velocity dispersions in dwarfs and spirals

    Get PDF
    Gas velocity dispersions provide important diagnostics of the forces counteracting gravity to prevent collapse of the gas. We use the 21 cm line of neutral atomic hydrogen (HI) to study HI velocity dispersion and HI phases as a function of galaxy morphology in 22 galaxies from The HI Nearby Galaxy Survey (THINGS). We stack individual HI velocity profiles and decompose them into broad and narrow Gaussian components. We study the HI velocity dispersion and the HI surface density, as a function of radius. For spirals, the velocity dispersions of the narrow and broad components decline with radius and their radial profiles are well described by an exponential function. For dwarfs, however, the profiles are much flatter. The single Gaussian dispersion profiles are, in general, flatter than those of the narrow and broad components. In most cases, the dispersion profiles in the outer disks do not drop as fast as the star formation profiles, derived in the literature. This indicates the importance of other energy sources in driving HI velocity dispersion in the outer disks. The radial surface density profiles of spirals and dwarfs are similar. The surface density profiles of the narrow component decline more steeply than those of the broad component, but not as steep as what was found previously for the molecular component. As a consequence, the surface density ratio between the narrow and broad components, an estimate of the mass ratio between cold HI and warm HI, tends to decrease with radius. On average, this ratio is lower in dwarfs than in spirals. This lack of a narrow, cold HI component in dwarfs may explain their low star formation activity.Comment: Accepted for publication in The Astronomical Journal, 13 pages, 10 figures, 4 table

    Resolved magnetic structures in the disk-halo interface of NGC 628

    Get PDF
    Magnetic fields are essential to fully understand the interstellar medium (ISM) and its role in the disk-halo interface of galaxies is still poorly understood. Star formation is known to expel hot gas vertically into the halo and these outflows have important consequences for mean-field dynamo theory in that they can be efficient in removing magnetic helicity. We perform new observations of the nearby face-on spiral galaxy NGC 628 with the Karl G. Jansky Very Large Array (JVLA) at S-band and the Effelsberg 100-m telescope at frequencies of 2.6 GHz and 8.35 GHz. We obtain some of the most sensitive radio continuum images in both total and linearly polarised intensity of any external galaxy observed so far in addition to high-quality images of Faraday depth and polarisation angle from which we obtained evidence for drivers of magnetic turbulence in the disk-halo connection. Such drivers include a superbubble detected via a significant Faraday depth gradient coinciding with a HI hole. We observe an azimuthal periodic pattern in Faraday depth with a pattern wavelength of 3.7±\pm 0.1 kpc, indicating Parker instabilities. The lack of a significant anti-correlation between Faraday depth and magnetic pitch angle indicates that these loops are vertical in nature with little helical twisting, unlike in IC 342. We find that the magnetic pitch angle is systematically larger than the morphological pitch angle of the polarisation arms which gives evidence for the action of a large-scale dynamo where the regular magnetic field is not coupled to the gas flow and obtains a significant radial component. We additionally discover a lone region of ordered magnetic field to the north of the galaxy with a high degree of polarisation and a small pitch angle, a feature that has not been observed in any other galaxy so far and is possibly caused by an asymmetric HI hole.Comment: 25 pages, Accepted for publication in Astronomy and Astrophysic

    Effect of Variation of Chord and Span of Ailerons on Rolling and Yawing Moments at Several Angles of Pitch

    Get PDF
    This report presents the results of an extension to higher angles of attack of the investigation of the rolling and yawing moments due to ailerons of various chords and spans on two airfoils having the Clark Y and U. S. A. 27 wings. The measurements were made at various angles of pitch but at zero angle of roll and yaw, the wing chord being set at an angle of +4 degrees to the fuselage axis. In the case of the Clark Y airfoil the measurements have been extended to a pitch angle of 40 degrees, using ailerons of span equal to 67 per cent of the wing semispan and chord equal to 20 and 30 per cent of the wing chord. The work was conducted on wing models of 60-inch span and 10-inch chord

    Accurate Recovery of H i Velocity Dispersion from Radio Interferometers

    Get PDF
    Gas velocity dispersion measures the amount of disordered motion of a rotating disk. Accurate estimates of this parameter are of the utmost importance because the parameter is directly linked to disk stability and star formation. A global measure of the gas velocity dispersion can be inferred from the width of the atomic hydrogen (H I) 21 cm line. We explore how several systematic effects involved in the production of H I cubes affect the estimate of H I velocity dispersion. We do so by comparing the H I velocity dispersion derived from different types of data cubes provided by The H I Nearby Galaxy Survey. We find that residual-scaled cubes best recover the H I velocity dispersion, independent of the weighting scheme used and for a large range of signal-to-noise ratio. For H I observations, where the dirty beam is substantially different from a Gaussian, the velocity dispersion values are overestimated unless the cubes are cleaned close to (e.g., ˜1.5 times) the noise level

    Imaging Fabry-Perot Spectroscopy of NGC 5775: Kinematics of the Diffuse Ionized Gas Halo

    Full text link
    We present imaging Fabry-Perot observations of Halpha emission in the nearly edge-on spiral galaxy NGC 5775. We have derived a rotation curve and a radial density profile along the major axis by examining position-velocity (PV) diagrams from the Fabry-Perot data cube as well as a CO 2-1 data cube from the literature. PV diagrams constructed parallel to the major axis are used to examine changes in azimuthal velocity as a function of height above the midplane. The results of this analysis reveal the presence of a vertical gradient in azimuthal velocity. The magnitude of this gradient is approximately 1 km/s/arcsec, or about 8 km/s/kpc, though a higher value of the gradient may be appropriate in localized regions of the halo. The evidence for an azimuthal velocity gradient is much stronger for the approaching half of the galaxy, although earlier slit spectra are consistent with a gradient on both sides. There is evidence for an outward radial redistribution of gas in the halo. The form of the rotation curve may also change with height, but this is not certain. We compare these results with those of an entirely ballistic model of a disk-halo flow. The model predicts a vertical gradient in azimuthal velocity which is shallower than the observed gradient, indicating that an additional mechanism is required to further slow the rotation speeds in the halo.Comment: 18 pages, 18 figures. Uses emulateapj.cls. Accepted for publication in Ap
    corecore