14 research outputs found

    Effect of time and body position on ventilation in premature infants

    No full text
    Background:Infants with respiratory dysfunction undergo regular position changes to improve lung function however it is not known how often a position change should occur. This study measured changes in lung function occurring over time after repositioning in preterm infants.Methods:Changes in end-expiratory level (EEL) and ventilation distribution were measured 30 mins, 2 h, and 4 h after repositioning into either prone, quarter turn from prone, or supine using Electrical Impedance Tomography (EIT). Physiological measurements were also taken.Results:Sixty preterm infants were included in the study. Infants receiving respiratory support (mechanical ventilation or continuous positive airway pressure (CPAP)) had improved ventilation homogeneity after 2 h (P < 0.01), maintained at 4 h. Spontaneously breathing infants had improved homogeneity at 2 h (P < 0.01) and improved global EEL after 4 h (P < 0.01) whereas infants receiving CPAP demonstrated an improved global EEL at 2 h (P < 0.01).Conclusion:Regional ventilation distribution is influenced by time independent of changes due to body position. Differences exist between infants on ventilatory support compared with those who are spontaneously breathing. Infants receiving ventilatory support have a physiological peak in lung function after 2 h which remains above baseline at 4 h. A change in body position facilitates an improvement in lung function in infants on ventilatory support

    Regional distribution of blood volume within the preterm infant thorax during synchronised mechanical ventilation

    No full text
    Perfusion in healthy adults is gravity-dependent. Little is known about lung perfusion in the preterm infant. The aim of this study was to describe the regional distribution of blood volume within the thorax in preterm infants receiving synchronised volume-targeted mechanical ventilation (SIPPV + TTV) and to compare this to regional distribution of tidal ventilation using electrical impedance tomography (EIT)
    corecore