6,491 research outputs found
Deformation of crosslinked semiflexible polymer networks
Networks of filamentous proteins play a crucial role in cell mechanics. These
cytoskeletal networks, together with various crosslinking and other associated
proteins largely determine the (visco)elastic response of cells. In this letter
we study a model system of crosslinked, stiff filaments in order to explore the
connection between the microstructure under strain and the macroscopic response
of cytoskeletal networks. We find two distinct regimes as a function primarily
of crosslink density and filament rigidity: one characterized by affine
deformation and one by non-affine deformation. We characterize the crossover
between these two.Comment: Typos fixed and some technical details clarified. To appear in Phys.
Rev. Let
Left lateralization in autobiographical memory: An fMRI study using the expert archival paradigm
In brain-imaging and behavioural research, studies of autobiographical memory have higher ecological validity than controlled laboratory memory studies. However, they also have less controllability over the variables investigated. Here we present a novel technique—the expert archival paradigm—that increases controllability while maintaining ecological validity. Stimuli were created from games played by two international-level chess masters. We then asked these two players to perform a memory task with stimuli generated from their own games and stimuli generated from other players’ games while they were scanned using fMRI. We found a left lateralised pattern of brain activity which was very similar in both masters. The brain areas activated were the left temporo-parietal junction and left frontal areas. The expert archival paradigm has the advantage of not requiring an interview to assess the participants’ autobiographical memories, and affords the possibility of measuring their accuracy of remembering as well as their brain activity related to remote and recent memories. It can also be used in any field of expertise, including arts, sciences and sports, in which archival data are available
Brain Localisation of Memory Chunks in Chessplayers
Chess experts store domain-specific representations in their long-term memory; due to the activation of such representations, they perform with high accuracy in tasks that require the maintenance of previously seen information. Chunk-based theories of expertise (chunking theory: Chase & Simon, 1973; template theory: Gobet & Simon, 1996) state that expertise is acquired mainly by the acquisition and storage in long-term memory of familiar chunks that allow quick recognition. We tested some predictions of these theories by using fMRI while chessplayers performed a recognition memory task. These theories predict that chessplayers access long-term memory chunks of domain-specific information, which are presumably stored in the temporal lobes. We also predicted that the recognition memory tasks would activate working memory areas in the frontal and parietal lobes. These predictions were supported by the data
A mean field description of jamming in non-cohesive frictionless particulate systems
A theory for kinetic arrest in isotropic systems of repulsive,
radially-interacting particles is presented that predicts exponents for the
scaling of various macroscopic quantities near the rigidity transition that are
in agreement with simulations, including the non-trivial shear exponent. Both
statics and dynamics are treated in a simplified, one-particle level
description, and coupled via the assumption that kinetic arrest occurs on the
boundary between mechanically stable and unstable regions of the static
parameter diagram. This suggests the arrested states observed in simulations
are at (or near) an elastic buckling transition. Some additional numerical
evidence to confirm the scaling of microscopic quantities is also provided.Comment: 9 pages, 3 figs; additional clarification of different elastic moduli
exponents, plus typo fix. To appear in PR
Factorization in Formal Languages
We consider several novel aspects of unique factorization in formal
languages. We reprove the familiar fact that the set uf(L) of words having
unique factorization into elements of L is regular if L is regular, and from
this deduce an quadratic upper and lower bound on the length of the shortest
word not in uf(L). We observe that uf(L) need not be context-free if L is
context-free.
Next, we consider variations on unique factorization. We define a notion of
"semi-unique" factorization, where every factorization has the same number of
terms, and show that, if L is regular or even finite, the set of words having
such a factorization need not be context-free. Finally, we consider additional
variations, such as unique factorization "up to permutation" and "up to
subset"
Volume-controlled buckling of thin elastic shells: Application to crusts formed on evaporating partially-wetted droplets
Motivated by the buckling of glassy crusts formed on evaporating droplets of
polymer and colloid solutions, we numerically model the deformation and
buckling of spherical elastic caps controlled by varying the volume between the
shell and the substrate. This volume constraint mimics the incompressibility of
the unevaporated solvent. Discontinuous buckling is found to occur for
sufficiently thin and/or large contact angle shells, and robustly takes the
form of a single circular region near the boundary that `snaps' to an inverted
shape, in contrast to externally pressurised shells. Scaling theory for shallow
shells is shown to well approximate the critical buckling volume, the
subsequent enlargement of the inverted region and the contact line force.Comment: 7 pages in J. Phys. Cond. Mat. spec; 4 figs (2 low-quality to reach
LANL's over-restrictive size limits; ask for high-detailed versions if
required
Electron-vibration interaction in transport through atomic gold wires
We calculate the effect of electron-vibration coupling on conduction through
atomic gold wires, which was measured in the experiments of Agra\"it et al.
[Phys. Rev. Lett. 88, 216803 (2002)]. The vibrational modes, the coupling
constants, and the inelastic transport are all calculated using a tight-binding
parametrization and the non-equilibrium Green function formalism. The
electron-vibration coupling gives rise to small drops in the conductance at
voltages corresponding to energies of some of the vibrational modes. We study
systematically how the position and height of these steps vary as a linear wire
is stretched and more atoms are added to it, and find a good agreement with the
experiments. We also consider two different types of geometries, which are
found to yield qualitatively similar results. In contrast to previous
calculations, we find that typically there are several close-lying drops due to
different longitudinal modes. In the experiments, only a single drop is usually
visible, but its width is too large to be accounted for by temperature.
Therefore, to explain the experimental results, we find it necessary to
introduce a finite broadening to the vibrational modes, which makes the
separate drops merge into a single, wide one. In addition, we predict how the
signatures of vibrational modes in the conductance curves differ between linear
and zigzag-type wires.Comment: 19 pages, 12 figure
The mechanical response of semiflexible networks to localized perturbations
Previous research on semiflexible polymers including cytoskeletal networks in
cells has suggested the existence of distinct regimes of elastic response, in
which the strain field is either uniform (affine) or non-uniform (non-affine)
under external stress. Associated with these regimes, it has been further
suggested that a new fundamental length scale emerges, which characterizes the
scale for the crossover from non-affine to affine deformations. Here, we extend
these studies by probing the response to localized forces and force dipoles. We
show that the previously identified nonaffinity length [D.A. Head et al. PRE
68, 061907 (2003).] controls the mesoscopic response to point forces and the
crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to
clarify the crossover to continuum elasticity and the role of finite-size
effect
Glassy dynamics in granular compaction
Two models are presented to study the influence of slow dynamics on granular
compaction. It is found in both cases that high values of packing fraction are
achieved only by the slow relaxation of cooperative structures. Ongoing work to
study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter,
proceedings of the Trieste workshop on 'Unifying concepts in glass physics
Fluctuation-dissipation relations in trap models
Trap models are intuitively appealing and often solvable models of glassy
dynamics. In particular, they have been used to study aging and the resulting
out-of-equilibrium fluctuation-dissipation relations between correlations and
response functions. In this note I show briefly that one such relation, first
given by Bouchaud and Dean, is valid for a general class of mean-field trap
models: it relies only on the way a perturbation affects the transition rates,
but is independent of the distribution of trap depths and the form of the
unperturbed transition rates, and holds for all observables that are
uncorrelated with the energy. The model with Glauber dynamics and an
exponential distribution of trap depths, as considered by Barrat and Mezard,
does not fall into this class if the perturbation is introduced in the standard
way by shifting all trap energies. I show that a similar relation between
response and correlation nevertheless holds for the out-of-equilibrium dynamics
at low temperatures. The results point to intriguing parallels between trap
models with energetic and entropic barriers.Comment: Extended introduction and discussion of relation to results of
cond-mat/0303445. 13 pages, 2 figures, IOP styl
- …