139 research outputs found

    Laser-Induced Damage Initiation and Growth of Optical Materials

    Get PDF
    The lifetime of optical components is determined by the combination of laser-induced damage initiation probability and damage propagation rate during subsequent laser shots. This paper reviews both theoretical and experimental investigations on laser-induced damage initiation and growth at the surface of optics. The damage mechanism is generally considered as thermal absorption and electron avalanche, which play dominant roles for the different laser pulse durations. The typical damage morphology in the surface of components observed in experiments is also closely related to the damage mechanism. The damage crater in thermal absorption process, which can be estimated by thermal diffusion model, is typical distortion, melting, and ablation debris often with an elevated rim caused by melted material flow and resolidification. However, damage initiated by electron avalanche is often accompanied by generation of plasma, crush, and fracture, which can be explained by thermal explosion model. Damage growth at rear surface of components is extremely severe which can be explained by several models, such as fireball growth, impact crater, brittle fracture, and electric field enhancement. All the physical effects are not independent but mutually coupling. Developing theoretical models of multiphysics coupling are an important trend for future theoretical research. Meanwhile, more attention should be paid to integrated analysis both in theory and experiment

    Bistatic InSAR interferometry imaging and DSM generation for TH-2

    Get PDF
    TH-2 is a bistatic synthetic aperture radar (SAR) satellite system in formation flight. Compared with traditional InSAR systems, it can eliminate decoherent sources such as time and atmosphere, besides, it can generate highly coherent SAR image pairs. This paper firstly describe the extended chirp scaling (ECS) imaging algorithm based on the hyperbolic equivalent method, and also introduces pre-filtering to deal with problems such as reduced coherence and interference phase errors caused by mixed baselines. Secondly, it introduces the interference processing method and the technical process of DSM reconstruction in the bistatic mode. Finally, an interference imaging experiment is performed using the original echo data of a certain mountainous experimental area, and the 3D reconstruction experiment is performed by using the generated SAR image pair, which analyzes the coherence of the image, the phase unwrapping results and the DSM reconstruction results. The experimental results verify that the interference imaging algorithm in this paper has good focusing effect and phase preservation capacity. At the same time, the interferometry and 3D reconstruction capabilities of the data are verified as well

    Occurrence and molecular characterization of Potato spindle tuber viroid (PSTVd) isolates from potato plants in North China

    Get PDF
    peer reviewedChina is the largest potato producing country worldwide, with this crop representing the fourth largest staple food crop in China. However, the steady presence of Potato spindle tuber viroid (PSTVd) over the past five decades has a significant economic impact on potato production. To determine why PSTVd control measures have been ineffective in China, more than 1 000 seed potatoes collected between 2009 and 2014 were subjected to PSTVd detection at the Supervision and Testing Center for Virus-free Seed Potatoes Quality, Ministry of Agriculture, China. A high PSTVd infection rate (6.5%) was detected among these commercial seed potatoes. Some breeding lines of potato collected from 2012 to 2015 were also tested for PSTVd infection, revealing a high rate of PSTVd contamination in these potato propagation materials. Furthermore, comparison of the full-length sequences of 71 different Chinese PSTVd isolates revealed a total of 74 predominant PSTVd variants, which represented 42 different sequence variants of PSTVd. Comparative sequence analysis revealed 30 novel PSTVd sequence variants specific to China. Comprehensive phylogenetic analysis uncovered a close relationship between the Chinese PSTVd sequence variants and those isolated from Russia. It is worth noting that three intermediate strains and six mild strains were identified among these variants. These results have important implications for explaining the ineffective control of PSTVd in China and thus could serve as a basic reference for designing more effective measures to eliminate PSTVd from China in the future

    Subcutaneous Administration of PDGF-AA Improves the Functional Recovery After Spinal Cord Injury

    Get PDF
    Previous studies by our group have demonstrated that the transplantation of exogenous platelet-derived growth factor (PDGF)-AA-overexpressing oligodendrocyte progenitor cells (OPCs) promotes tissue repair and recovery of neurological function in a rat model of spinal cord injury (SCI). However, it remains unclear whether treatment with PDGF-AA also affects endogenous oligodendrocytes (OLs) or even neurons, thus promoting further functional recovery after SCI. In the present study, we evaluated the therapeutic potential of PDGF-AA treatment by direct subcutaneous injection of PDGF-AA immediately after SCI. We demonstrated that PDGF-AA injection resulted in increased tissue sparing, myelination and functional recovery in rats following SCI. Further experimentation confirmed that PDGF-AA increased the survival of endogenous OPCs and OLs, and promoted the proliferation of OPCs and their differentiation into OLs. Moreover, PDGF-AA also protected motor neurons from death in the injured spinal cord. These results indicated that PDGF-AA administration may be an effective treatment for SCI

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Evolution of scaling emergence in large-scale spatial epidemic spreading

    Get PDF
    Background: Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.Comment: 24pages, 7figures, accepted by PLoS ON

    Synthesis and applications of porous non-silica metal oxide submicrospheres

    Get PDF
    © 2016 Royal Society of Chemistry. Nowadays the development of submicroscale products of specific size and morphology that feature a high surface area to volume ratio, well-developed and accessible porosity for adsorbates and reactants, and are non-toxic, biocompatible, thermally stable and suitable as synergetic supports for precious metal catalysts is of great importance for many advanced applications. Complex porous non-silica metal oxide submicrospheres constitute an important class of materials that fulfill all these qualities and in addition, they are relatively easy to synthesize. This review presents a comprehensive appraisal of the methods used for the synthesis of a wide range of porous non-silica metal oxide particles of spherical morphology such as porous solid spheres, core-shell and yolk-shell particles as well as single-shell and multi-shell particles. In particular, hydrothermal and low temperature solution precipitation methods, which both include various structure developing strategies such as hard templating, soft templating, hydrolysis, or those taking advantage of Ostwald ripening and the Kirkendall effect, are reviewed. In addition, a critical assessment of the effects of different experimental parameters such as reaction time, reaction temperature, calcination, pH and the type of reactants and solvents on the structure of the final products is presented. Finally, the practical usefulness of complex porous non-silica metal oxide submicrospheres in sensing, catalysis, biomedical, environmental and energy-related applications is presented

    Contact problem of rubber rings with large deformation

    Full text link
    corecore