55,142 research outputs found

    Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering

    Full text link
    A practical scheme for the demonstration of perfect one-sided device-independent quantum secret sharing is proposed. The scheme involves a three-mode optomechanical system in which a pair of independent cavity modes is driven by short laser pulses and interact with a movable mirror. We demonstrate that by tuning the laser frequency to the blue (anti-Stokes) sideband of the average frequency of the cavity modes, the modes become mutually coherent and then may collectively steer the mirror mode to a perfect Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally feasible, it is robust against the frequency difference between the modes, mechanical thermal noise and damping, and coupling strengths of the cavity modes to the mirror.Comment: 9 pages, 4 figure

    Mass transfer dynamics during brining of rabbit meat

    Full text link
    [EN] As a traditional processing method, brining is a preliminary, critical and even essential process for many traditional rabbit meat products in China. The aim of this work was to investigate mass transfer of rabbit meat brined in different salt concentration. Rabbit meat (Longissimus dorsi) was brined for 24 h in 5 brine solutions (5, 10, 15, 20 and 25% NaCl [w/w]). Results indicated that mass transfer and kinetics parameters were significantly affected by the brine concentration during brining. When brine concentration increased, the total and water weight changes decreased, whereas the sodium chloride weight changes increased. Higher brine concentrations resulted in a higher degree of protein denaturation and consequently gave lower process yields. Samples treated with higher brine concentrations obtained lower brining kinetic parameter values for total weight changes and water weight changes, whereas they acquired higher values for sodium chloride weight changes.The authors gratefully acknowledge financial support from the Special Public Welfare Industry (Agriculture) Research Program of China (Grant N°. 201303144), the National Rabbit Industry Technology System Programme (Grant N°. CARS-44D-1) and Chongqing Science and Technology Commission (cstc2014pt-gc8001). Part of the study was presented in a poster at the 11th World Rabbit Conference.Wang, Z.; He, Z.; Li, H. (2017). Mass transfer dynamics during brining of rabbit meat. World Rabbit Science. 25(4):377-385. https://doi.org/10.4995/wrs.2017.6687SWORD37738525

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Controlling chaos in a chaotic neural network

    Get PDF
    The chaotic neural network constructed with chaotic neuron shows the associative memory function, but its memory searching process cannot be stabilized in a stored state because of the chaotic motion of the network. In this paper, a pinning control method focused on the chaotic neural network is proposed. The computer simulation proves that the chaos in the chaotic neural network can be controlled with this method and the states of the network can converge in one of its stored patterns if the control strength and the pinning density are chosen suitable. It is found that in general the threshold of the control strength of a controlled network is smaller at higher pinned density and the chaos of the chaotic neural network can be controlled more easily if the pinning control is added to the variant neurons between the initial pattern and the target pattern
    • …
    corecore