54,283 research outputs found
Model for a Light Z' Boson
A model of a light boson is constructed and phenomenological bounds are
derived. This boson arises from a very simple extension to the Standard
Model, and it is constrained to be light because the vacuum expectation values
which generate its mass also break the electroweak gauge group. It is difficult
to detect experimentally because it couples exclusively or primarily (depending
on symmetry breaking details) to second and third generation leptons. However,
if the boson is sufficiently light, then there exists the possibility of
the two-body decay occuring. This will provide a
striking signature to test the model.Comment: 20 pages + 5 pages of figures (appended as postscipt files), LaTeX,
OITS-53
Checking the transverse Ward-Takahashi relation at one loop order in 4-dimensions
Some time ago Takahashi derived so called {\it transverse} relations relating
Green's functions of different orders to complement the well-known
Ward-Green-Takahashi identities of gauge theories by considering wedge rather
than inner products. These transverse relations have the potential to determine
the full fermion-boson vertex in terms of the renormalization functions of the
fermion propagator. He & Yu have given an indicative proof at one-loop level in
4-dimensions. However, their construct involves the 4th rank Levi-Civita tensor
defined only unambiguously in 4-dimensions exactly where the loop integrals
diverge. Consequently, here we explicitly check the proposed transverse
Ward-Takahashi relation holds at one loop order in -dimensions, with
.Comment: 20 pages, 3 figures This version corrects and clarifies the previous
result. This version has been submitted for publicatio
Partially linear censored quantile regression
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates are assumed to act on the response through a non-linear function. Here the CRQ approach of Portnoy (J Am Stat Assoc 98:1001–1012, 2003) is extended to this partially linear setting. Basic consistency results are presented. A simulation experiment and unemployment example justify the value of the partially linear approach over methods based on the Cox proportional hazards model and on methods not permitting nonlinearity
Effects of turbulent dust grain motion to interstellar chemistry
Theoretical studies have revealed that dust grains are usually moving fast
through the turbulent interstellar gas, which could have significant effects
upon interstellar chemistry by modifying grain accretion. This effect is
investigated in this work on the basis of numerical gas-grain chemical
modeling. Major features of the grain motion effect in the typical environment
of dark clouds (DC) can be summarised as follows: 1) decrease of gas-phase
(both neutral and ionic) abundances and increase of surface abundances by up to
2-3 orders of magnitude; 2) shifts of the existing chemical jumps to earlier
evolution ages for gas-phase species and to later ages for surface species by
factors of about ten; 3) a few exceptional cases in which some species turn out
to be insensitive to this effect and some other species can show opposite
behaviors too. These effects usually begin to emerge from a typical DC model
age of about 10^5 yr. The grain motion in a typical cold neutral medium (CNM)
can help overcome the Coulomb repulsive barrier to enable effective accretion
of cations onto positively charged grains. As a result, the grain motion
greatly enhances the abundances of some gas-phase and surface species by
factors up to 2-6 or more orders of magnitude in the CNM model. The grain
motion effect in a typical molecular cloud (MC) is intermediate between that of
the DC and CNM models, but with weaker strength. The grain motion is found to
be important to consider in chemical simulations of typical interstellar
medium.Comment: 20 pages, 10 figures and 2 table
Concurrence of superposition
The bounds on concurrence of the superposition state in terms of those of the
states being superposed are studied in this paper. The bounds on concurrence
are quite different from those on the entanglement measure based on von Neumann
entropy (Phys. Rev. Lett. 97, 100502 (2006)). In particular, a nonzero lower
bound can be provided if the states being superposed are properly constrained.Comment: 4 page
Euler equation of the optimal trajectory for the fastest magnetization reversal of nano-magnetic structures
Based on the modified Landau-Lifshitz-Gilbert equation for an arbitrary
Stoner particle under an external magnetic field and a spin-polarized electric
current, differential equations for the optimal reversal trajectory, along
which the magnetization reversal is the fastest one among all possible reversal
routes, are obtained. We show that this is a Euler-Lagrange problem with
constrains. The Euler equation of the optimal trajectory is useful in designing
a magnetic field pulse and/or a polarized electric current pulse in
magnetization reversal for two reasons. 1) It is straightforward to obtain the
solution of the Euler equation, at least numerically, for a given magnetic
nano-structure characterized by its magnetic anisotropy energy. 2) After
obtaining the optimal reversal trajectory for a given magnetic nano-structure,
finding a proper field/current pulse is an algebraic problem instead of the
original nonlinear differential equation
Constraints on the phase and new physics from Decays
Recent results from CLEO on indicate that the phase may
be substantially different from that obtained from other fit to the KM matrix
elements in the Standard Model. We show that extracted using is sensitive to new physics occurring at loop level. It provides
a powerful method to probe new physics in electroweak penguin interactions.
Using effects due to anomalous gauge couplings as an example, we show that
within the allowed ranges for these couplings information about
obtained from can be very different from the Standard
Model prediction.Comment: Revised version with analysis done using new data from CLEO. RevTex,
11 Pages with two figure
CP Violation in Fermion Pair Decays of Neutral Boson Particles
We study CP violation in fermion pair decays of neutral boson particles with
spin 0 or 1. We study a new asymmetry to measure CP violation in decays and discuss the possibility of measuring it
experimentally. For the spin-1 particles case, we study CP violation in the
decays of to octet baryon pairs. We show that these decays can
be used to put stringent constraints on the electric dipole moments of
, and .Comment: 14p, OZ-93/22, UM-93/89, OITS 51
- …