66,925 research outputs found

    A cusp electron gun for millimeter wave gyrodevices

    Get PDF
    The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a "smooth" magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio alpha of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC

    A covariant entropy conjecture on cosmological dynamical horizon

    Full text link
    We here propose a covariant entropy conjecture on cosmological dynamical horizon. After the formulation of our conjecture, we test its validity in adiabatically expanding universes with open, flat and closed spatial geometry, where our conjecture can also be viewed as a cosmological version of the generalized second law of thermodynamics in some sense.Comment: JHEP style, 9 pages, 1 figure, typos corrected, accepted for publication in JHE

    A Possible Way of Connecting the Grassmann Variables and the Number of Generation

    Full text link
    We construct a Left-Right symmetric model in which the number of generation is related to Grassmann variables. We introduce two sets of complex Grassmann variables (θq1\theta^1_q,θq2\theta^2_q), (θl1\theta^1_l, θl2\theta ^2_l) and associate each variable with left- and right-handed quark and lepton fields, respectively. Expanding quark and lepton fields in powers of the Grassmann variables, we find that there are exactly three generations of quarks and leptons. Integrating out the Grassmann variables, we obtain phenomenologically acceptable fermion mass matrices.Comment: 7 pages, Revtex, UM-P-93/40, OZ-93/1

    Random Time-Scale Invariant Diffusion and Transport Coefficients

    Full text link
    Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time averaged mean squared displacement δ2\overline{\delta^2} of individual particles remains a random variable while indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within the continuous time random walk model and show that δ2\overline{\delta^2} differs from the corresponding ensemble average. In particular we derive the distribution for the fluctuations of the random variable δ2\overline{\delta^2}. Similarly we quantify the response to a constant external field, revealing a generalization of the Einstein relation. Consequences for the interpretation of single molecule tracking data are discussed.Comment: 4 pages, 4 figures.Article accompanied by a PRL Viewpoint in Physics1, 8 (2008

    Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling

    Get PDF
    Background: Hedgehog (Hh) signals are instrumental to the dorsoventral patterning of the vertebrate eye, promoting optic stalk and ventral retinal fates and repressing dorsal retinal identity. There has been limited analysis, however, of the critical window during which Hh molecules control eye polarity and of the temporal changes in the responsiveness of eye cells to these signals. Results: In this study, we used pharmacological and molecular tools to perform stage-specific manipulations of Hh signalling in the developing Xenopus eye. In gain-of-function experiments, most of the eye was sensitive to ventralization when the Hh pathway was activated starting from gastrula/neurula stages. During optic vesicle stages, the dorsal eye became resistant to Hh-dependent ventralization, but this pathway could partially upregulate optic stalk markers within the retina. In loss-of-function assays, inhibition of Hh signalling starting from neurula stages caused expansion of the dorsal retina at the expense of the ventral retina and the optic stalk, while the effects of Hh inhibition during optic vesicle stages were limited to the reduction of optic stalk size. Conclusions: Our results suggest the existence of two competence windows during which the Hh pathway differentially controls patterning of the eye region. In the first window, between the neural plate and the optic vesicle stages, Hh signalling exerts a global influence on eye dorsoventral polarity, contributing to the specification of optic stalk, ventral retina and dorsal retinal domains. In the second window, between optic vesicle and optic cup stages, this pathway plays a more limited role in the maintenance of the optic stalk domain. We speculate that this temporal regulation is important to coordinate dorsoventral patterning with morphogenesis and differentiation processes during eye development

    CP Violation in Fermion Pair Decays of Neutral Boson Particles

    Full text link
    We study CP violation in fermion pair decays of neutral boson particles with spin 0 or 1. We study a new asymmetry to measure CP violation in η,KLμ+μ\eta, K_L \rightarrow \mu^+\mu^- decays and discuss the possibility of measuring it experimentally. For the spin-1 particles case, we study CP violation in the decays of J/ψJ/\psi to SU(3)SU(3) octet baryon pairs. We show that these decays can be used to put stringent constraints on the electric dipole moments of Λ\Lambda, Σ\Sigma and Ξ\Xi.Comment: 14p, OZ-93/22, UM-93/89, OITS 51

    Multi-mode coupling wave theory for helically corrugated waveguide

    Get PDF
    Helically corrugated waveguide has been used in various applications such as gyro-backward wave oscillators, gyro-traveling wave amplifier and microwave pulse compressor. A fast prediction of the dispersion characteristic of the operating eigenwave is very important when designing a helically corrugated waveguide. In this paper, multi-mode coupling wave equations were developed based on the perturbation method. This method was then used to analyze a five-fold helically corrugated waveguide used for X-band microwave compression. The calculated result from this analysis was found to be in excellent agreement with the results from numerical simulation using CST Microwave Studio and vector network analyzer measurements

    Bosonic Reduction of Susy Generalized Harry Dym Equation

    Full text link
    In this paper we construct the two component supersymmetric generalized Harry Dym equation which is integrable and study various properties of this model in the bosonic limit. In particular, in the bosonic limit we obtain a new integrable system which, under a hodograph transformation, reduces to a coupled three component system. We show how the Hamiltonian structure transforms under a hodograph transformation and study the properties of the model under a further reduction to a two component system. We find a third Hamiltonian structure for this system (which has been shown earlier to be a bi-Hamiltonian system) making this a genuinely tri-Hamiltonian system. The connection of this system to the modified dispersive water wave equation is clarified. We also study various properties in the dispersionless limit of our model.Comment: 21 page

    Concurrence of superposition

    Get PDF
    The bounds on concurrence of the superposition state in terms of those of the states being superposed are studied in this paper. The bounds on concurrence are quite different from those on the entanglement measure based on von Neumann entropy (Phys. Rev. Lett. 97, 100502 (2006)). In particular, a nonzero lower bound can be provided if the states being superposed are properly constrained.Comment: 4 page
    corecore