89,040 research outputs found

    Charmonium suppression by gluon bremsstrahlung in p-A and A-B collisions

    Full text link
    Prompt gluons are an additional source for charmonium suppression in nuclear collisions, in particular for nucleus-nucleus collisions. These gluons are radiated as bremsstrahlung in N-N collisions and interact inelastically with the charmonium states while the nuclei still overlap. The spectra and mean number of the prompt gluons are calculated perturbatively and the gluon-Psi inelastic cross section is estimated. The integrated cross sections for AB --> J/Psi (Psi')X for p-A and A-B collisions and the dependence on transverse energy for S-U and Pb-Pb can be described quantitatively with some adjustment of one parameter \sigma(gPsi).Comment: 17 pages of Latex including 10 figure

    Transport theory with self-consistent confinement related to the lattice data

    Get PDF
    The space-time development of a quark-gluon plasma is calculated from a Vlasov equation for the distribution function of quasiparticles with medium dependent masses. At each space-time point the masses are calculated selfconsistently from a gap equation, whose form is determined by the requirement that in thermal equilibrium and for a range of temperatures the energy density of the quasi-particle system is identical to the one from lattice calculations . The numerical solutions of the Vlasov equation display confinement. Relations to effective theories like that by Friedberg Lee and Nambu Jona-Lasinio are established.Comment: 9 pages, 12 figure

    Constraints on primordial black holes and primeval density perturbations from the epoch of reionization

    Get PDF
    We investigate the constraint on the abundance of primordial black holes (PBHs) and the spectral index nn of primeval density perturbations given by the ionizing photon background at the epoch of reionization. Within the standard inflationary cosmogony, we show that the spectral index nn of the power-law power spectrum of primeval density perturbations should be n<n<1.27. Since the universe is still optical thick at the reionization redshift z6z\sim 6 - 8, this constraint is independent of the unknown parameter of reheating temperature of the inflation. The ionizing photon background from the PBHs can be well approximated by a power law spectrum J(ν)ν3J(\nu)\propto{\nu}^3, which is greatly different from those given by models of massive stars and quasars.Comment: 4 pages, 3 eps figues, to be published in ApJ Letter

    Calabi-Yau coalgebras

    Full text link
    We provide a construction of minimal injective resolutions of simple comodules of path coalgebras of quivers with relations. Dual to Calabi-Yau condition of algebras, we introduce the Calabi-Yau condition to coalgebras. Then we give some descriptions of Calabi-Yau coalgebras with lower global dimensions. An appendix is included for listing some properties of cohom functors

    Dualities of artinian coalgebras with applications to noetherian complete algebras

    Full text link
    A duality theorem of the bounded derived category of quasi-finite comodules over an artinian coalgebra is established. Let AA be a noetherian complete basic semiperfect algebra over an algebraically closed field, and CC be its dual coalgebra. If AA is Artin-Schelter regular, then the local cohomology of AA is isomorphic to a shift of twisted bimodule 1Cσ{}_1C_{\sigma^*} with σ\sigma a coalgebra automorphism. This yields that the balanced dualinzing complex of AA is a shift of the twisted bimodule σA1{}_{\sigma^*}A_1. If σ\sigma is an inner automorphism, then AA is Calabi-Yau

    Extrinsic models for the dielectric response of CaCu{3}Ti{4}O{12}

    Full text link
    The large, temperature-independent, low-frequency dielectric constant recently observed in single-crystal CaCu{3}Ti{4}O{12} is most plausibly interpreted as arising from spatial inhomogenities of its local dielectric response. Probable sources of inhomogeneity are the various domain boundaries endemic in such materials: twin, Ca-ordering, and antiphase boundaries. The material in and neighboring such boundaries can be insulating or conducting. We construct a decision tree for the resulting six possible morphologies, and derive or present expressions for the dielectric constant for models of each morphology. We conclude that all six morphologies can yield dielectric behavior consistent with observations and suggest further experiments to distinguish among them.Comment: 9 pages, with 1 postscript figure embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/mc_ext/index.htm

    Euler equation of the optimal trajectory for the fastest magnetization reversal of nano-magnetic structures

    Full text link
    Based on the modified Landau-Lifshitz-Gilbert equation for an arbitrary Stoner particle under an external magnetic field and a spin-polarized electric current, differential equations for the optimal reversal trajectory, along which the magnetization reversal is the fastest one among all possible reversal routes, are obtained. We show that this is a Euler-Lagrange problem with constrains. The Euler equation of the optimal trajectory is useful in designing a magnetic field pulse and/or a polarized electric current pulse in magnetization reversal for two reasons. 1) It is straightforward to obtain the solution of the Euler equation, at least numerically, for a given magnetic nano-structure characterized by its magnetic anisotropy energy. 2) After obtaining the optimal reversal trajectory for a given magnetic nano-structure, finding a proper field/current pulse is an algebraic problem instead of the original nonlinear differential equation
    corecore