1,263 research outputs found
A Local Density-Based Approach for Local Outlier Detection
This paper presents a simple but effective density-based outlier detection
approach with the local kernel density estimation (KDE). A Relative
Density-based Outlier Score (RDOS) is introduced to measure the local
outlierness of objects, in which the density distribution at the location of an
object is estimated with a local KDE method based on extended nearest neighbors
of the object. Instead of using only nearest neighbors, we further consider
reverse nearest neighbors and shared nearest neighbors of an object for density
distribution estimation. Some theoretical properties of the proposed RDOS
including its expected value and false alarm probability are derived. A
comprehensive experimental study on both synthetic and real-life data sets
demonstrates that our approach is more effective than state-of-the-art outlier
detection methods.Comment: 22 pages, 14 figures, submitted to Pattern Recognition Letter
FSMJ: Feature Selection with Maximum Jensen-Shannon Divergence for Text Categorization
In this paper, we present a new wrapper feature selection approach based on
Jensen-Shannon (JS) divergence, termed feature selection with maximum
JS-divergence (FSMJ), for text categorization. Unlike most existing feature
selection approaches, the proposed FSMJ approach is based on real-valued
features which provide more information for discrimination than binary-valued
features used in conventional approaches. We show that the FSMJ is a greedy
approach and the JS-divergence monotonically increases when more features are
selected. We conduct several experiments on real-life data sets, compared with
the state-of-the-art feature selection approaches for text categorization. The
superior performance of the proposed FSMJ approach demonstrates its
effectiveness and further indicates its wide potential applications on data
mining.Comment: 8 pages, 6 figures, World Congress on Intelligent Control and
Automation, 201
Toward Optimal Feature Selection in Naive Bayes for Text Categorization
Automated feature selection is important for text categorization to reduce
the feature size and to speed up the learning process of classifiers. In this
paper, we present a novel and efficient feature selection framework based on
the Information Theory, which aims to rank the features with their
discriminative capacity for classification. We first revisit two information
measures: Kullback-Leibler divergence and Jeffreys divergence for binary
hypothesis testing, and analyze their asymptotic properties relating to type I
and type II errors of a Bayesian classifier. We then introduce a new divergence
measure, called Jeffreys-Multi-Hypothesis (JMH) divergence, to measure
multi-distribution divergence for multi-class classification. Based on the
JMH-divergence, we develop two efficient feature selection methods, termed
maximum discrimination () and methods, for text categorization.
The promising results of extensive experiments demonstrate the effectiveness of
the proposed approaches.Comment: This paper has been submitted to the IEEE Trans. Knowledge and Data
Engineering. 14 pages, 5 figure
Probabilistic Human Mobility Model in Indoor Environment
Understanding human mobility is important for the development of intelligent
mobile service robots as it can provide prior knowledge and predictions of
human distribution for robot-assisted activities. In this paper, we propose a
probabilistic method to model human motion behaviors which is determined by
both internal and external factors in an indoor environment. While the internal
factors are represented by the individual preferences, aims and interests, the
external factors are indicated by the stimulation of the environment. We model
the randomness of human macro-level movement, e.g., the probability of visiting
a specific place and staying time, under the Bayesian framework, considering
the influence of both internal and external variables. We use two case studies
in a shopping mall and in a college student dorm building to show the
effectiveness of our proposed probabilistic human mobility model. Real
surveillance camera data are used to validate the proposed model together with
survey data in the case study of student dorm.Comment: 8 pages, 9 figures, International Joint Conference on Neural Networks
(IJCNN) 201
Detection of False Data Injection Attacks in Smart Grid under Colored Gaussian Noise
In this paper, we consider the problems of state estimation and false data
injection detection in smart grid when the measurements are corrupted by
colored Gaussian noise. By modeling the noise with the autoregressive process,
we estimate the state of the power transmission networks and develop a
generalized likelihood ratio test (GLRT) detector for the detection of false
data injection attacks. We show that the conventional approach with the
assumption of Gaussian noise is a special case of the proposed method, and thus
the new approach has more applicability. {The proposed detector is also tested
on an independent component analysis (ICA) based unobservable false data attack
scheme that utilizes similar assumptions of sample observation.} We evaluate
the performance of the proposed state estimator and attack detector on the IEEE
30-bus power system with comparison to conventional Gaussian noise based
detector. The superior performance of {both observable and unobservable false
data attacks} demonstrates the effectiveness of the proposed approach and
indicates a wide application on the power signal processing.Comment: 8 pages, 4 figures in IEEE Conference on Communications and Network
Security (CNS) 201
- …