79,358 research outputs found

    Tuning electronic structure of graphene via tailoring structure: theoretical study

    Full text link
    Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle patterns give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.Comment: 5 figures, 6 page

    University of Glasgow at WebCLEF 2005: experiments in per-field normalisation and language specific stemming

    Get PDF
    We participated in the WebCLEF 2005 monolingual task. In this task, a search system aims to retrieve relevant documents from a multilingual corpus of Web documents from Web sites of European governments. Both the documents and the queries are written in a wide range of European languages. A challenge in this setting is to detect the language of documents and topics, and to process them appropriately. We develop a language specific technique for applying the correct stemming approach, as well as for removing the correct stopwords from the queries. We represent documents using three fields, namely content, title, and anchor text of incoming hyperlinks. We use a technique called per-field normalisation, which extends the Divergence From Randomness (DFR) framework, to normalise the term frequencies, and to combine them across the three fields. We also employ the length of the URL path of Web documents. The ranking is based on combinations of both the language specific stemming, if applied, and the per-field normalisation. We use our Terrier platform for all our experiments. The overall performance of our techniques is outstanding, achieving the overall top four performing runs, as well as the top performing run without metadata in the monolingual task. The best run only uses per-field normalisation, without applying stemming

    SU(2) gluon propagator on a coarse anisotropic lattice

    Get PDF
    We calculated the SU(2) gluon propagator in Landau gauge on an anisotropic coarse lattice with the improved action. The standard and the improved scheme are used to fix the gauge in this work. Even on the coarse lattice the lattice gluon propagator can be well described by a function of the continuous momentum. The effect of the improved gauge fixing scheme is found not to be apparent. Based on the Marenzoni's model, the mass scale and the anomalous dimension are extracted and can be reasonably extrapolated to the continuum limit with the values α0.3\alpha\sim 0.3 and M600MeVM\sim 600MeV. We also extract the physical anisotropy ξ\xi from the gluon propagator due to the explicit ξ\xi dependence of the gluon propagator.Comment: LaTeX, 14 pages including 4 ps figure

    Euler equation of the optimal trajectory for the fastest magnetization reversal of nano-magnetic structures

    Full text link
    Based on the modified Landau-Lifshitz-Gilbert equation for an arbitrary Stoner particle under an external magnetic field and a spin-polarized electric current, differential equations for the optimal reversal trajectory, along which the magnetization reversal is the fastest one among all possible reversal routes, are obtained. We show that this is a Euler-Lagrange problem with constrains. The Euler equation of the optimal trajectory is useful in designing a magnetic field pulse and/or a polarized electric current pulse in magnetization reversal for two reasons. 1) It is straightforward to obtain the solution of the Euler equation, at least numerically, for a given magnetic nano-structure characterized by its magnetic anisotropy energy. 2) After obtaining the optimal reversal trajectory for a given magnetic nano-structure, finding a proper field/current pulse is an algebraic problem instead of the original nonlinear differential equation

    η\eta production off the proton in a Regge-plus-chiral quark approach

    Full text link
    A chiral constituent quark model approach, embodying s- and u-channel exchanges,complemented with a Reggeized treatment for t-channel is presented. A model is obtained allowing data for πpηn\pi^- p \to \eta n and γpηp\gamma p \to \eta p to be describe satisfactorily. For the latter reaction, recently released data by CLAS and CBELSA/TAPS Collaborations in the system total energy range 1.6W2.81.6 \lesssim W \lesssim 2.8 GeV are well reproduced due to the inclusion of Reggeized trajectories instead of simple ρ\rho and ω\omega poles. Contribution from "missing" resonances is found to be negligible in the considered processes.Comment: 23 pages.4 figures,4 tables, to appear in Phys.Rev.
    corecore