23 research outputs found

    Distributionally Robust Variational Quantum Algorithms with Shifted Noise

    Full text link
    Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is the high sensitivity of quantum noise to environmental changes, and its propensity to shift in real time. This presents a critical problem as an optimized VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as a random variable with an unknown probability density function (PDF), and we assume that the PDF may shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical evidence in both the Quantum Approximate Optimization Algorithm (QAOA) and the Variational Quantum Eigensolver (VQE) with hardware-efficient ansatz, indicating that we can identify parameters that perform more robustly under shifted noise. We regard this work as the first step towards improving the reliability of VQAs influenced by real-time noise.Comment: 11 pages, 8 figure

    Distributionally Robust Circuit Design Optimization under Variation Shifts

    Full text link
    Due to the significant process variations, designers have to optimize the statistical performance distribution of nano-scale IC design in most cases. This problem has been investigated for decades under the formulation of stochastic optimization, which minimizes the expected value of a performance metric while assuming that the distribution of process variation is exactly given. This paper rethinks the variation-aware circuit design optimization from a new perspective. First, we discuss the variation shift problem, which means that the actual density function of process variations almost always differs from the given model and is often unknown. Consequently, we propose to formulate the variation-aware circuit design optimization as a distributionally robust optimization problem, which does not require the exact distribution of process variations. By selecting an appropriate uncertainty set for the probability density function of process variations, we solve the shift-aware circuit optimization problem using distributionally robust Bayesian optimization. This method is validated with both a photonic IC and an electronics IC. Our optimized circuits show excellent robustness against variation shifts: the optimized circuit has excellent performance under many possible distributions of process variations that differ from the given statistical model. This work has the potential to enable a new research direction and inspire subsequent research at different levels of the EDA flow under the setting of variation shift.Comment: accepted by ICCAD 2023, 8 page
    corecore