94 research outputs found

    Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning

    Full text link
    Parameter-efficient fine-tuning (PEFT) has shown its effectiveness in adapting the pre-trained language models to downstream tasks while only updating a small number of parameters. Despite the success, most existing methods independently adapt to each task without considering knowledge transfer between tasks and are limited to low-data regimes. To overcome this issue, we propose Prototype-based HyperAdapter (PHA), a novel framework built on the adapter-tuning and hypernetwork. It introduces an instance-dense retriever and a prototypical hypernetwork to generate the conditional modules in a sample-efficient manner. This leads to comparable performance improvements against existing PEFT methods on multi-task learning and few-shot transfer learning. More importantly, when the available data size gets smaller, our method outperforms other strong baselines by a large margin. Based on our extensive empirical experiments across various datasets, we demonstrate that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.Comment: Accepted by EMNLP 202

    Pluralistic Aging Diffusion Autoencoder

    Full text link
    Face aging is an ill-posed problem because multiple plausible aging patterns may correspond to a given input. Most existing methods often produce one deterministic estimation. This paper proposes a novel CLIP-driven Pluralistic Aging Diffusion Autoencoder (PADA) to enhance the diversity of aging patterns. First, we employ diffusion models to generate diverse low-level aging details via a sequential denoising reverse process. Second, we present Probabilistic Aging Embedding (PAE) to capture diverse high-level aging patterns, which represents age information as probabilistic distributions in the common CLIP latent space. A text-guided KL-divergence loss is designed to guide this learning. Our method can achieve pluralistic face aging conditioned on open-world aging texts and arbitrary unseen face images. Qualitative and quantitative experiments demonstrate that our method can generate more diverse and high-quality plausible aging results.Comment: Accepted by ICCV 202

    Towards Spatio-temporal Sea Surface Temperature Forecasting via Static and Dynamic Learnable Personalized Graph Convolution Network

    Full text link
    Sea surface temperature (SST) is uniquely important to the Earth's atmosphere since its dynamics are a major force in shaping local and global climate and profoundly affect our ecosystems. Accurate forecasting of SST brings significant economic and social implications, for example, better preparation for extreme weather such as severe droughts or tropical cyclones months ahead. However, such a task faces unique challenges due to the intrinsic complexity and uncertainty of ocean systems. Recently, deep learning techniques, such as graphical neural networks (GNN), have been applied to address this task. Even though these methods have some success, they frequently have serious drawbacks when it comes to investigating dynamic spatiotemporal dependencies between signals. To solve this problem, this paper proposes a novel static and dynamic learnable personalized graph convolution network (SD-LPGC). Specifically, two graph learning layers are first constructed to respectively model the stable long-term and short-term evolutionary patterns hidden in the multivariate SST signals. Then, a learnable personalized convolution layer is designed to fuse this information. Our experiments on real SST datasets demonstrate the state-of-the-art performances of the proposed approach on the forecasting task

    Learning-to-Rank Meets Language: Boosting Language-Driven Ordering Alignment for Ordinal Classification

    Full text link
    We present a novel language-driven ordering alignment method for ordinal classification. The labels in ordinal classification contain additional ordering relations, making them prone to overfitting when relying solely on training data. Recent developments in pre-trained vision-language models inspire us to leverage the rich ordinal priors in human language by converting the original task into a visionlanguage alignment task. Consequently, we propose L2RCLIP, which fully utilizes the language priors from two perspectives. First, we introduce a complementary prompt tuning technique called RankFormer, designed to enhance the ordering relation of original rank prompts. It employs token-level attention with residual-style prompt blending in the word embedding space. Second, to further incorporate language priors, we revisit the approximate bound optimization of vanilla cross-entropy loss and restructure it within the cross-modal embedding space. Consequently, we propose a cross-modal ordinal pairwise loss to refine the CLIP feature space, where texts and images maintain both semantic alignment and ordering alignment. Extensive experiments on three ordinal classification tasks, including facial age estimation, historical color image (HCI) classification, and aesthetic assessment demonstrate its promising performance. The code is available at https://github.com/raywang335/L2RCLIP.Comment: Accepted by NeurIPS 202

    CHATEDIT: Towards Multi-turn Interactive Facial Image Editing via Dialogue

    Full text link
    This paper explores interactive facial image editing via dialogue and introduces the ChatEdit benchmark dataset for evaluating image editing and conversation abilities in this context. ChatEdit is constructed from the CelebA-HQ dataset, incorporating annotated multi-turn dialogues corresponding to user edit requests on the images. The dataset is challenging, as it requires the system to dynamically track user requests, edit images, and generate appropriate responses. Accordingly, we propose three benchmark tasks: (i) user edit request tracking, (ii) image editing, and (iii) response generation. We present a novel baseline framework that integrates a dialogue module for both tracking user requests and generating responses and an image editing module for image editing. Unlike previous approaches, our framework directly tracks user edit requests from the entire dialogue history up to the current turn and modifies the original image rather than adjusting the previous turn's output, thereby reducing error accumulation and preventing attribute forgetfulness. Extensive experiments on the ChatEdit dataset underline our framework's superior performance against prior models, while also highlighting potential room for further research. We will release the code and data publicly to facilitate advancements in complex interactive facial image editing.Comment: Accepted to EMNLP 2023 (Main Conference

    MORE-3S:Multimodal-based Offline Reinforcement Learning with Shared Semantic Spaces

    Full text link
    Drawing upon the intuition that aligning different modalities to the same semantic embedding space would allow models to understand states and actions more easily, we propose a new perspective to the offline reinforcement learning (RL) challenge. More concretely, we transform it into a supervised learning task by integrating multimodal and pre-trained language models. Our approach incorporates state information derived from images and action-related data obtained from text, thereby bolstering RL training performance and promoting long-term strategic thinking. We emphasize the contextual understanding of language and demonstrate how decision-making in RL can benefit from aligning states' and actions' representation with languages' representation. Our method significantly outperforms current baselines as evidenced by evaluations conducted on Atari and OpenAI Gym environments. This contributes to advancing offline RL performance and efficiency while providing a novel perspective on offline RL.Our code and data are available at https://github.com/Zheng0428/MORE_

    Deep Reinforcement Learning with Multitask Episodic Memory Based on Task-Conditioned Hypernetwork

    Full text link
    Deep reinforcement learning algorithms are usually impeded by sampling inefficiency, heavily depending on multiple interactions with the environment to acquire accurate decision-making capabilities. In contrast, humans rely on their hippocampus to retrieve relevant information from past experiences of relevant tasks, which guides their decision-making when learning a new task, rather than exclusively depending on environmental interactions. Nevertheless, designing a hippocampus-like module for an agent to incorporate past experiences into established reinforcement learning algorithms presents two challenges. The first challenge involves selecting the most relevant past experiences for the current task, and the second challenge is integrating such experiences into the decision network. To address these challenges, we propose a novel method that utilizes a retrieval network based on task-conditioned hypernetwork, which adapts the retrieval network's parameters depending on the task. At the same time, a dynamic modification mechanism enhances the collaborative efforts between the retrieval and decision networks. We evaluate the proposed method on the MiniGrid environment.The experimental results demonstrate that our proposed method significantly outperforms strong baselines
    corecore