58 research outputs found

    GPT-4 Is Too Smart To Be Safe: Stealthy Chat with LLMs via Cipher

    Full text link
    Safety lies at the core of the development of Large Language Models (LLMs). There is ample work on aligning LLMs with human ethics and preferences, including data filtering in pretraining, supervised fine-tuning, reinforcement learning from human feedback, and red teaming, etc. In this study, we discover that chat in cipher can bypass the safety alignment techniques of LLMs, which are mainly conducted in natural languages. We propose a novel framework CipherChat to systematically examine the generalizability of safety alignment to non-natural languages -- ciphers. CipherChat enables humans to chat with LLMs through cipher prompts topped with system role descriptions and few-shot enciphered demonstrations. We use CipherChat to assess state-of-the-art LLMs, including ChatGPT and GPT-4 for different representative human ciphers across 11 safety domains in both English and Chinese. Experimental results show that certain ciphers succeed almost 100% of the time to bypass the safety alignment of GPT-4 in several safety domains, demonstrating the necessity of developing safety alignment for non-natural languages. Notably, we identify that LLMs seem to have a ''secret cipher'', and propose a novel SelfCipher that uses only role play and several demonstrations in natural language to evoke this capability. SelfCipher surprisingly outperforms existing human ciphers in almost all cases. Our code and data will be released at https://github.com/RobustNLP/CipherChat.Comment: 13 pages, 4 figures, 9 table

    Inhibition effect of polyvinyl butyral on crystallization of polypropylene

    Get PDF
    In this work, a series of polypropylene/polyvinyl butyral (PP/PVB) blends were prepared by melt-blending process, at PVB loadings 3 wt%, 10 wt%, and 30 wt%. The effects of PVB on crystallization behavior of PP were investigated by differential scanning calorimetry (DSC), and polarized optical microscopy (POM). The isothermal crystallization kinetics were analyzed by Avrami equations. It was found that the addition of PVB strikingly reduced the overall crystallization rate of PP. The POM results further indicated that the crystallization rate of PP/PVB was significantly reduced by reducing the nucleation density of PP with the addition of PVB. The fractured surface morphology of PP/PVB blends was characterized by scanning electron microscopy (SEM), and the results showed that the PVB was uniformly dispersed in the PP matrix as small spherical particles, with a good dispersion and dimensional stability

    Mechanical properties and crystallographic texture of non-oriented electrical steel processed by repetitive bending under tension

    Get PDF
    Improving the magnetic properties of non-oriented electrical steel (NOES) through the optimization of crystallographic texture has been an on-going research activity for decades. However, using traditional rolling and annealing procedures, the obtained final textures were usually very similar, i.e., exhibiting the {111} (γ) and 〈 (α) fibres, which were not the desired {001} texture (θ-fibre) for optimal magnetic quality. In the current work, a 1.8 wt% Si NOES was processed using a new sheet metal deformation method, i.e., repetitive bending under tension (R-BUT), also known as continuous bending under tension (C-BUT), to modify the texture of the electrical steel. The hot-rolled and annealed NOES plates were repeatedly bent and unbent when they were pulled under tension. The deformed plates were then heat treated at different temperatures for various times. Neutron diffraction and electron backscatter diffraction (EBSD) characterisation of the macro- and micro-textures proved that the R-BUT process significantly reduced the undesired {111} texture while promoting the {001} texture. The cube texture, which rarely formed after conventional rolling and annealing, was also seen in the R-BUT samples after annealing. It was shown that, the shear plastic deformation (induced by R-BUT) played a significant role in promoting the desired textures. In addition, the results indicated that the NOES processed by R-BUT could be deformed beyond its common formability limit, which may provide a method to address the poor workability challenge of high silicon electrical steels

    Structural mechanism of heavy metal-associated integrated domain engineering of paired nucleotide-binding and leucine-rich repeat proteins in rice

    Get PDF
    Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune sensors that detect pathogen effectors and initiate a strong immune response. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. These proteins possess a conserved architecture, including a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB) domain, and a variable N-terminal domain. Nevertheless, many paired NLRs linked in a head-to-head configuration have now been identified. The ones carrying integrated domains (IDs) can recognize pathogen effector proteins by various modes; these are known as sensor NLR (sNLR) proteins. Structural and biochemical studies have provided insights into the molecular basis of heavy metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-evolution between pathogens and hosts by combining naturally occurring favorable interactions across diverse interfaces. Focusing on structural and molecular models, here we highlight advances in structure-guided engineering to expand and enhance the response profile of paired NLR-HMA IDs in rice to variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and ToxB-like). These results demonstrate that the HMA IDs-based design of rice materials with broad and enhanced resistance profiles possesses great application potential but also face considerable challenges

    Mitotic Illegitimate Recombination Is a Mechanism for Novel Changes in High-Molecular-Weight Glutenin Subunits in Wheat-Rye Hybrids

    Get PDF
    Wide hybrids can have novel traits or changed expression of a quantitative trait that their parents do not have. These phenomena have long been noticed, yet the mechanisms are poorly understood. High-molecular-weight glutenin subunits (HMW-GS) are seed storage proteins encoded by Glu-1 genes that only express in endosperm in wheat and its related species. Novel HMW-GS compositions have been observed in their hybrids. This research elucidated the molecular mechanisms by investigating the causative factors of novel HMW-GS changes in wheat-rye hybrids. HMW-GS compositions in the endosperm and their coding sequences in the leaves of F1 and F2 hybrids between wheat landrace Shinchunaga and rye landrace Qinling were investigated. Missing and/or additional novel HMW-GSs were observed in the endosperm of 0.5% of the 2078 F1 and 22% of 36 F2 hybrid seeds. The wildtype Glu-1Ax null allele was found to have 42 types of short repeat sequences of 3-60 bp long that appeared 2 to 100 times. It also has an in-frame stop codon in the central repetitive region. Analyzing cloned allele sequences of HMW-GS coding gene Glu-1 revealed that deletions involving the in-frame stop codon had happened, resulting in novel ∼1.8-kb Glu-1Ax alleles in some F1 and F2 plants. The cloned mutant Glu-1Ax alleles were expressed in Escherichia coli, and the HMW-GSs produced matched the novel HMW-GSs found in the hybrids. The differential changes between the endosperm and the plant of the same hybrids and the data of E. coli expression of the cloned deletion alleles both suggested that mitotic illegitimate recombination between two copies of a short repeat sequence had resulted in the deletions and thus the changed HMW-GS compositions. Our experiments have provided the first direct evidence to show that mitotic illegitimate recombination is a mechanism that produces novel phenotypes in wide hybrids

    Grain-scale characterization of FCCBCC correspondence relations and variant selection

    No full text
    The misorientations between FCC and BCC crystals are characterized according to the common lattice correspondence relationships in terms of their parallelism conditions. Individual variants of the six models, namely the Bain, Kurdjumov-Sachs, Nishiyama-Wassermann, Pitsch, Greninger-Troiano and inverse Greninger-Troiano relations, are identified and represented in both pole figure form and in Rodrigues-Frank space with respect to various coordinate frames. In this way, the relations between the variants of these models are clarified.The orientations of the kamacite (BCC) lamellae transformed from a single prior-taenite (FCC) grain in the Gibeon meteorite were measured by analyzing the electron backscatter diffraction patterns. The local misorientations between individual FCC and BCC crystals along their common interfaces were computed and are compared with the common lattice correspondence relationships. The orientation relations between the alpha and gamma phases in the plessite regions are also characterized. The Neumann bands (mechanical twins) and their orientation variations within individual kamacite lamellae were studied and analyzed.A Nb-bearing TRIP steel was control rolled and a certain amount of austenite was retained through appropriate heat treatment. EBSD measurements were conducted on specimens deformed to various reductions and the textures (ODF's) of both the gamma and alpha phases were obtained from the measured data points. The orientations of the bainite formed within individual prior-austenite grains are compared to those expected from the common correspondence relationships and the average orientation of the prior-austenite grain. The crystallography of the bainite laths within a single packet is also characterized.The orientations of the bainite formed from individual prior-austenite grains are analyzed with respect to their parent orientations. The occurrence of variant selection at the grain scale was examined using a dislocation-based model. The model considers the role of the slip systems that were active during prior deformation, as well as those of in-plane reaction, cross-slip and the partial dislocations that are linked to specific variants. In this model, the K-S and N-W correspondence relations are united through the dissociation of perfect dislocations. The variants in more than 70% of the grains examined are reasonably well predicted by this model

    Textures of Non-Oriented Electrical Steel Sheets Produced by Skew Cold Rolling and Annealing

    No full text
    In order to investigate the effect of cold rolling deformation mode and initial texture on the final textures of non-oriented electrical steels, a special rolling technique, i.e., skew rolling, was utilized to cold reduce steels. This not only altered initial textures but also changed the rolling deformation mode from plane-strain compression (2D) to a more complicated 3D mode consisting of thickness reduction, strip elongation, strip width spread and bending. This 3D deformation induced significantly different cold-rolling textures from those observed with conventional rolling, especially for steels containing low (0.88 wt%) and medium (1.83 wt%) amounts of silicon at high skew angles (30° and 45°). The difference in cold-rolling texture was attributed to the change of initial texture and the high shear strain resulting from skew rolling. After annealing, significantly different recrystallization textures also formed, which did not show continuous <110>//RD (rolling direction) and <111>//ND (normal direction) fibers as commonly observed in conventionally rolled and annealed steels. At some skew angles (e.g., 15–30°), the desired <001>//ND texture was largely enhanced, while at other angles (e.g., 45°), this fiber was essentially unchanged. The formation mechanisms of the cold rolling and recrystallization textures were qualitatively discussed

    Textures of Non-Oriented Electrical Steel Sheets Produced by Skew Cold Rolling and Annealing

    No full text
    In order to investigate the effect of cold rolling deformation mode and initial texture on the final textures of non-oriented electrical steels, a special rolling technique, i.e., skew rolling, was utilized to cold reduce steels. This not only altered initial textures but also changed the rolling deformation mode from plane-strain compression (2D) to a more complicated 3D mode consisting of thickness reduction, strip elongation, strip width spread and bending. This 3D deformation induced significantly different cold-rolling textures from those observed with conventional rolling, especially for steels containing low (0.88 wt%) and medium (1.83 wt%) amounts of silicon at high skew angles (30° and 45°). The difference in cold-rolling texture was attributed to the change of initial texture and the high shear strain resulting from skew rolling. After annealing, significantly different recrystallization textures also formed, which did not show continuous //RD (rolling direction) and //ND (normal direction) fibers as commonly observed in conventionally rolled and annealed steels. At some skew angles (e.g., 15–30°), the desired //ND texture was largely enhanced, while at other angles (e.g., 45°), this fiber was essentially unchanged. The formation mechanisms of the cold rolling and recrystallization textures were qualitatively discussed
    • …
    corecore