207 research outputs found

    Time-efficient fault detection and diagnosis system for analog circuits

    Get PDF
    Time-efficient fault analysis and diagnosis of analog circuits are the most important prerequisites to achieve online health monitoring of electronic equipments, which are involving continuing challenges of ultra-large-scale integration, component tolerance, limited test points but multiple faults. This work reports an FPGA (field programmable gate array)-based analog fault diagnostic system by applying two-dimensional information fusion, two-port network analysis and interval math theory. The proposed system has three advantages over traditional ones. First, it possesses high processing speed and smart circuit size as the embedded algorithms execute parallel on FPGA. Second, the hardware structure has a good compatibility with other diagnostic algorithms. Third, the equipped Ethernet interface enhances its flexibility for remote monitoring and controlling. The experimental results obtained from two realistic example circuits indicate that the proposed methodology had yielded competitive performance in both diagnosis accuracy and time-effectiveness, with about 96% accuracy while within 60 ms computational time.Peer reviewedFinal Published versio

    Optimal analog wavelet bases construction using hybrid optimization algorithm

    Get PDF
    An approach for the construction of optimal analog wavelet bases is presented. First, the definition of an analog wavelet is given. Based on the definition and the least-squares error criterion, a general framework for designing optimal analog wavelet bases is established, which is one of difficult nonlinear constrained optimization problems. Then, to solve this problem, a hybrid algorithm by combining chaotic map particle swarm optimization (CPSO) with local sequential quadratic programming (SQP) is proposed. CPSO is an improved PSO in which the saw tooth chaotic map is used to raise its global search ability. CPSO is a global optimizer to search the estimates of the global solution, while the SQP is employed for the local search and refining the estimates. Benefiting from good global search ability of CPSO and powerful local search ability of SQP, a high-precision global optimum in this problem can be gained. Finally, a series of optimal analog wavelet bases are constructed using the hybrid algorithm. The proposed method is tested for various wavelet bases and the improved performance is compared with previous works.Peer reviewedFinal Published versio

    Structure and realization of pole-shared switched-current complex wavelet filter

    Get PDF
    A pole-shared switched-current complex wavelet filter structure with follow-the-leader feedback configuration is proposed for synthesizing the real and imaginary approximation functions with the same poles. The double-sampling fully-balanced SI bilinear integrator and current mirror are employed as the building cells. By sharing the implementation circuit for approximation poles of the real and the imaginary part, the proposed structure only has the same circuit complexity as that of real-valued wavelet filter, which is very suitable for small-size and low-power application. The complex Morlet wavelet is selected as an example to elaborate the design procedure. Simulation results confirm that the presented complex wavelet filter structure can generate the real and imaginary coefficients of complex wavelet transform accurately with simple synthesis method and explicit design formulas.Peer reviewedFinal Accepted Versio

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    Realization of Analog Wavelet Filter using Hybrid Genetic Algorithm for On-line Epileptic Event Detection

    Get PDF
    © 2020 The Author(s). This open access work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/.As the evolution of traditional electroencephalogram (EEG) monitoring unit for epilepsy diagnosis, wearable ambulatory EEG (WAEEG) system transmits EEG data wirelessly, and can be made miniaturized, discrete and social acceptable. To prolong the battery lifetime, analog wavelet filter is used for epileptic event detection in WAEEG system to achieve on-line data reduction. For mapping continuous wavelet transform to analog filter implementation with low-power consumption and high approximation accuracy, this paper proposes a novel approximation method to construct the wavelet base in analog domain, in which the approximation process in frequency domain is considered as an optimization problem by building a mathematical model with only one term in the numerator. The hybrid genetic algorithm consisting of genetic algorithm and quasi-Newton method is employed to find the globally optimum solution, taking required stability into account. Experiment results show that the proposed method can give a stable analog wavelet base with simple structure and higher approximation accuracy compared with existing method, leading to a better spike detection accuracy. The fourth-order Marr wavelet filter is designed as an example using Gm-C filter structure based on LC ladder simulation, whose power consumption is only 33.4 pW at 2.1Hz. Simulation results show that the design method can be used to facilitate low power and small volume implementation of on-line epileptic event detector.Peer reviewe

    Design of Gm-C wavelet filter for on-line epileptic EEG detection

    Get PDF
    Copyright © 2019 The Institute of Electronics, Information and Communication EngineersAnalog filter implementation of continuous wavelet transform is considered as a promising technique for on-line spike detection applied in wearable electroencephalogram system. This Letter proposes a novel method to construct analog wavelet base for analog wavelet filter design, in which the mathematical approximation model in frequency domain is built as an optimization problem and the genetic algorithm is used to find the global optimum resolution. Also, the Gm-C filter structure based on LC ladder simulation is employed to synthesize the obtained analog wavelet base. The Marr wavelet filter is designed as an example using SMIC 1V 0.35μm CMOS technology. Simulation results show that the proposed method can give a stable analog wavelet filter with higher approximation accuracy and excellent circuit performance, which is well suited for the design of low-frequency low-power spike detector.Peer reviewe

    Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.Efficient defect classification is one of the most important preconditions to achieve online quality inspection for hot-rolled strip steels. It is extremely challenging owing to various defect appearances, large intraclass variation, ambiguous interclass distance, and unstable gray values. In this paper, a generalized completed local binary patterns (GCLBP) framework is proposed. Two variants of improved completed local binary patterns (ICLBP) and improved completed noise-invariant local-structure patterns (ICNLP) under the GCLBP framework are developed for steel surface defect classification. Different from conventional local binary patterns variants, descriptive information hidden in nonuniform patterns is innovatively excavated for the better defect representation. This paper focuses on the following aspects. First, a lightweight searching algorithm is established for exploiting the dominant nonuniform patterns (DNUPs). Second, a hybrid pattern code mapping mechanism is proposed to encode all the uniform patterns and DNUPs. Third, feature extraction is carried out under the GCLBP framework. Finally, histogram matching is efficiently accomplished by simple nearest-neighbor classifier. The classification accuracy and time efficiency are verified on a widely recognized texture database (Outex) and a real-world steel surface defect database [Northeastern University (NEU)]. The experimental results promise that the proposed method can be widely applied in online automatic optical inspection instruments for hot-rolled strip steel.Peer reviewe

    Contrastive Bayesian Analysis for Deep Metric Learning

    Full text link
    Recent methods for deep metric learning have been focusing on designing different contrastive loss functions between positive and negative pairs of samples so that the learned feature embedding is able to pull positive samples of the same class closer and push negative samples from different classes away from each other. In this work, we recognize that there is a significant semantic gap between features at the intermediate feature layer and class labels at the final output layer. To bridge this gap, we develop a contrastive Bayesian analysis to characterize and model the posterior probabilities of image labels conditioned by their features similarity in a contrastive learning setting. This contrastive Bayesian analysis leads to a new loss function for deep metric learning. To improve the generalization capability of the proposed method onto new classes, we further extend the contrastive Bayesian loss with a metric variance constraint. Our experimental results and ablation studies demonstrate that the proposed contrastive Bayesian metric learning method significantly improves the performance of deep metric learning in both supervised and pseudo-supervised scenarios, outperforming existing methods by a large margin.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligenc

    A hybrid data driven framework considering feature extraction for battery state of health estimation and remaining useful life prediction.

    Get PDF
    Battery life prediction is of great significance to the safe operation, and the maintenance costs are reduced. This paper proposed a hybrid framework considering feature extraction to solve the problem of data backward, large sample data and uneven distribution of high-dimensional feature space, then to achieve a more accurate and stable prediction performance. By feature extraction, the measured data can be directly fed into the life prediction model. The hybrid framework combines variational mode decomposition, the multi-kernel support vector regression model and the improved sparrow search algorithm. Better parameters of the estimation model are obtained by introducing elite chaotic opposition-learning strategy and adaptive weights to optimize the sparrow search algorithm. The comparison is conducted by dataset from National Aeronautics and Space Administration, which shows that the proposed framework has a more accurate and stable prediction performance

    Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    Get PDF
    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery’s remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately
    corecore