9,601 research outputs found

    Professor Chen Ping Yang's early significant contributions to mathematical physics

    Full text link
    In the 60's Professor Chen Ping Yang with Professor Chen Ning Yang published several seminal papers on the study of Bethe's hypothesis for various problems of physics. The works on the lattice gas model, critical behaviour in liquid-gas transition, the one-dimensional (1D) Heisenberg spin chain, and the thermodynamics of 1D delta-function interacting bosons are significantly important and influential in the fields of mathematical physics and statistical mechanics. In particular, the work on the 1D Heisenberg spin chain led to subsequent developments in many problems using Bethe's hypothesis. The method which Yang and Yang proposed to treat the thermodynamics of the 1D system of bosons with a delta-function interaction leads to significant applications in a wide range of problems in quantum statistical mechanics. The Yang and Yang thermodynamics has found beautiful experimental verifications in recent years.Comment: 5 pages + 3 figure

    Exact Entanglement dynamics in Three Interacting Qubits

    Full text link
    Motivated by recent experimental study on coherent dynamics transfer in three interacting atoms or electron spins \cite{Barredo:2015,Rosenfeld:2018}, here we study entanglement entropy transfer in three interacting qubits. We analytically calculate time evolutions of wave function, density matrix and entanglement of the system. We find that initially entangled two qubits may alternatively transfer their entanglement entropy to other two qubit pairs. So that dynamical evolution of three interacting qubits may produce a genuine three-partite entangled state through entanglement entropy transfers. In particular, different pairwise interactions of the three qubits endow symmetric and asymmetric evolutions of the entanglement transfer, characterized by the quantum mutual information and concurence. Finally, we discuss an experimental proposal of three Rydberg atoms for testing the entanglement dynamics transfer of this kind.Comment: 6 pages + 5 figure

    Blowfish Privacy: Tuning Privacy-Utility Trade-offs using Policies

    Full text link
    Privacy definitions provide ways for trading-off the privacy of individuals in a statistical database for the utility of downstream analysis of the data. In this paper, we present Blowfish, a class of privacy definitions inspired by the Pufferfish framework, that provides a rich interface for this trade-off. In particular, we allow data publishers to extend differential privacy using a policy, which specifies (a) secrets, or information that must be kept secret, and (b) constraints that may be known about the data. While the secret specification allows increased utility by lessening protection for certain individual properties, the constraint specification provides added protection against an adversary who knows correlations in the data (arising from constraints). We formalize policies and present novel algorithms that can handle general specifications of sensitive information and certain count constraints. We show that there are reasonable policies under which our privacy mechanisms for k-means clustering, histograms and range queries introduce significantly lesser noise than their differentially private counterparts. We quantify the privacy-utility trade-offs for various policies analytically and empirically on real datasets.Comment: Full version of the paper at SIGMOD'14 Snowbird, Utah US

    A prior for steepness in stock-recruitment relationships, based on an evolutionary persistence principle

    Get PDF
    Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values

    Interactions of age-dependent mortality and selectivity functions in age-based stock assessment models

    Get PDF
    The natural mortality rate (M) of fish varies with size and age, although it is often assumed to be constant in stock assessments. Misspecification of M may bias important assessment quantities. We simulated fishery data, using an age-based population model, and then conducted stock assessments on the simulated data. Results were compared to known values. Misspecification of M had a negligible effect on the estimation of relative stock depletion; however, misspecification of M had a large effect on the estimation of parameters describing the stock recruitment relationship, age-specific selectivity, and catchability. If high M occurs in juvenile and old fish, but is misspecified in the assessment model, virgin biomass and catchability are often poorly estimated. In addition, stock recruitment relationships are often very difficult to estimate, and steepness values are commonly estimated at the upper bound (1.0) and overfishing limits tend to be biased low. Natural mortality can be estimated in assessment models if M is constant across ages or if selectivity is asymptotic. However if M is higher in old fish and selectivity is dome-shaped, M and the selectivity cannot both be adequately estimated because of strong interactions between M and selectivity
    • …
    corecore