706 research outputs found

    A Dynamic Analysis of Moving Average Rules

    Get PDF
    The use of various moving average rules remains popular with financial market practitioners. These rules have recently become the focus of a number empirical studies, but there have been very few studies of financial market models where some agents employ technical trading rules also used in practice. In this paper we propose a dynamic financial market model in which demand for traded assets has both a fundamentalist and a chartist component. The chartist demand is governed by the difference between current price and a (long run) moving average. Both types of traders are boundedly rational in the sense that, based on a fitness measure such as realized capital gains, traders switch from a strategy with low fitness to the one with high fitness. We characterize the stability and bifurcation properties of the underlying deterministic model via the reaction coefficient of the fundamentalists, the extrapolation rate of the chartists and the lag lengths used for the moving averages. By increasing the intensity of choice to switching strategies, we then examine various rational routes to randomness for different moving average rules. The price dynamics of the moving average rule is also examined and one of our main findings is that an increase of the window length of the moving average rule can destabilize an otherwise stable system, leading to more complicated, even chaotic behaviour. The analysis of the corresponding stochastic model is able to explain various market price phenomena, including temporary bubbles, sudden market crashes, price resistance and price switching between different levels.

    Biological control ecology of Aphidius colemani Viereck (Hymenoptera: Braconidae: Aphidiinae) on Myzus persicae (Sulzer) (Hemiptera: Aphididae) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Sciences (Entomology) at Massey University, Palmerston North, New Zealand

    Get PDF
    Content removed from thesis due to copyright reasons: Khatri, D., He, X. Z., & Wang, Q. (2017) Effective biological control depends on life history strategies of both parasitoid and its host : evidence from Aphidius colemani-Myzus persicae system. Jounal of Economic Entomology, 110(2), 400-406. doi:10.1093/jee/tow324; Khatri, D., He, X. Z., & Wang, Q. (2016). Trade-off between fitness gain and cost determines profitability of a peach aphid parasitoid. Journal of Economic Entomology, 109(4), 1539-1544. doi:10.1093/jee/tow105The solitary and koinobiont endoparasitoid, Aphidius colemani Viereck, is produced commercially for biological control of green peach aphid Myzus persicae (Sulzer) and cotton aphid Aphis gossypii Glover around the world. However, its production cost is still high and biological control efficiency is still uncertain, probably due to the lack of knowledge on its biological control ecology. To fill the knowledge gap, I investigated the biological control ecology of the A. colemani-M. persicae system. My results show that most emergence and reproductive activities of A. colemani occur during the photophase. After emergence, both sexes need about 2 hours for sex maturation, but once sexually mature, age of neither sex has any significant effect on mating success. Food supply to adult females is essential to mating success. The mating behavioural sequence is similar to that of many other braconid parasitoids. My findings suggest that A. colemani is an effective biological control agent of M. persicae because reproductive outputs of the parasitoid are twice as high as the aphid, the parasitoid reaches the maximum lifetime reproductive potential about a week earlier than the aphid, and parasitised aphids contribute little to their population growth and make limited damage to plants. The parasitoid prefers to attack larger hosts but such preference is counterbalanced by greater defensive ability of larger hosts, resulting in similar parasitism rate on hosts of all ages. As a result, parasitising mid-aged hosts allows A. colemani females to gain maximum fitness in developmental period, body size and parasitism of their progeny. Finally, my study confirms that A. colemani has a Type II functional response. However, it can still successfully control M. persicae regardless of pest density probably because parasitoid density has significantly more effect than host density on parasitoid reproductive fitness and the low mutual interference among the searching parasitoids encourages aggregation of the parasitoids on host patches of high density. The present study provides basic knowledge on the biology of A. colemani for development of effective measures for laboratory handling, rearing, and field release, and brings insight into the success of aphid biological control programmes using the parasitoid augmentation approach

    The nanoscale phase separation in hole-doped manganites

    Full text link
    A macroscopic phase separation, in which ferromagnetic clusters are observed in an insulating matrix, is sometimes observed, and believed to be essential to the colossal magnetoresistive (CMR) properties of manganese oxides. The application of a magnetic field may indeed trigger large magnetoresistance effects due to the percolation between clusters allowing the movement of the charge carriers. However, this macroscopic phase separation is mainly related to extrinsic defects or impurities, which hinder the long-ranged charge-orbital order of the system. We show in the present article that rather than the macroscopic phase separation, an homogeneous short-ranged charge-orbital order accompanied by a spin glass state occurs, as an intrinsic result of the uniformity of the random potential perturbation induced by the solid solution of the cations on the AA-sites of the structure of these materials. Hence the phase separation does occur, but in a more subtle and interesting nanoscopic form, here referred as ``homogeneous''. Remarkably, this ``nanoscale phase separation'' alone is able to bring forth the colossal magnetoresistance in the perovskite manganites, and is potentially relevant to a wide variety of other magnetic and/or electrical properties of manganites, as well as many other transition metal oxides, in bulk or thin film form as we exemplify throughout the article.Comment: jpsj2 TeX style (J. Phys. Soc. Jpn); 18 pages, 7 figure

    Analysis of optical magnetoelectric effect in GaFeO_3

    Full text link
    We study the optical absorption spectra in a polar ferrimagnet GaFeO_3. We consider the E1, E2 and M1 processes on Fe atoms. It is shown that the magnetoelectric effect on the absorption spectra arises from the E1-M1 interference process through the hybridization between the 4p and 3d states in the noncentrosymmetry environment of Fe atoms. We perform a microscopic calculation of the spectra on a cluster model of FeO_6 consisting of an octahedron of O atoms and an Fe atom displaced from the center with reasonable values for Coulomb interaction and hybridization. We obtain the magnetoelectric spectra, which depend on the direction of magnetization, as a function of photon energy in the optical region 1.0-2.5 eV, in agreement with the experiment.Comment: 18 pages, 5 figure

    Gigantic Enhancement of Magneto-Chiral Effect in Photonic Crystals

    Full text link
    We theoretically propose a method to enhance dramatically a magneto-chiral(MC) effect by using the photonic crystals composed of a multiferroic material. The MC effect, the directional birefringence even for unpolarized light, is so small that it has been difficult to observe experimentally. Two kinds of periodic structures are investigated; (a) a multilayer and (b) a stripe composed of a magneto-chiral material and air. In both cases, the difference in reflectivity between different magnetization directions is enhanced by a factor of hundreds compared with a bulk material.Comment: 3 pages, 3 figure
    • ā€¦
    corecore