82,002 research outputs found
TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair.
E-cadherin is a cell adhesion molecule best known for its function in suppressing tumor progression and metastasis. Here we show that E-cadherin promotes nucleotide excision repair through positively regulating the expression of xeroderma pigmentosum complementation group C (XPC) and DNA damage-binding protein 1 (DDB1). Loss of E-cadherin activates the E2F4 and p130/107 transcription repressor complexes to suppress the transcription of both XPC and DDB1 through activating the transforming growth factor-β (TGF-β) pathway. Adding XPC or DDB1, or inhibiting the TGF-β pathway, increases the repair of ultraviolet (UV)-induced DNA damage in E-cadherin-inhibited cells. In the mouse skin and skin tumors, UVB radiation downregulates E-cadherin. In sun-associated premalignant and malignant skin neoplasia, E-cadherin is downregulated in association with reduced XPC and DDB1 levels. These findings demonstrate a crucial role of E-cadherin in efficient DNA repair of UV-induced DNA damage, identify a new link between epithelial adhesion and DNA repair and suggest a mechanistic link of early E-cadherin loss in tumor initiation
Harmonic coordinates in the string and membrane equations
In this note, we first show that the solutions to Cauchy problems for two
versions of relativistic string and membrane equations are diffeomorphic. Then
we investigate the coordinates transformation presented in Ref. [9] (see (2.20)
in Ref. [9]) which plays an important role in the study on the dynamics of the
motion of string in Minkowski space. This kind of transformed coordinates are
harmonic coordinates, and the nonlinear relativistic string equations can be
straightforwardly simplified into linear wave equations under this
transformation
Investigation of Partial Discharge in Solid Dielectric under DC Voltage
A partial discharge, or PD, is defined as an electrical discharge that is localized within only a part of the insulation between two separated conductors. Recent research on PD mainly focuses on the study of PD characteristics under AC voltage. Compared with DC, PD under AC is more serious and can be easily detected in terms of PD number. As the results of these concentrated research, the understanding of PD under AC condition has been significantly improved and features extracted from PD measurements have been used to diagnose the insulation condition of many power apparatus. Recently, rapid development in HVDC transmission and power grids connection, and widely applied DC cable and gas-insulated switchgear because of their benefit in long distance usage lead to an increasing concern about PD under DC. However, available study for the condition is little and related research is therefore necessary and essential for understanding the lifetime and reliability of apparatus. <br/
Energy-Conserving Lattice Boltzmann Thermal Model in Two Dimensions
A discrete velocity model is presented for lattice Boltzmann thermal fluid dynamics.
This model is implemented and tested in two dimensions with a finite difference scheme. Comparison with analytical solutions shows an excellent agreement even for wide temperature differences. An alternative approximate approach is then presented for traditional lattice transport schemes
Making vortices in dipolar spinor condensates via rapid adiabatic passage
We propose to the create vortices in spin-1 condensates via magnetic
dipole-dipole interaction. Starting with a polarized condensate prepared under
large axial magnetic field, we show that by gradually inverting the field,
population transfer among different spin states can be realized in a controlled
manner. Under optimal condition, we generate a doubly quantized vortex state
containing nearly all atoms in the condensate. The resulting vortex state is a
direct manifestation of the dipole-dipole interaction and spin textures in
spinor condensates. We also point out that the whole process can be
qualitatively described by a simple rapid adiabatic passage model.Comment: 4 pages, 4 figure
First-principles study of native point defects in Bi2Se3
Using first-principles method within the framework of the density functional
theory, we study the influence of native point defect on the structural and
electronic properties of BiSe. Se vacancy in BiSe is a double
donor, and Bi vacancy is a triple acceptor. Se antisite (Se) is always
an active donor in the system because its donor level ((+1/0))
enters into the conduction band. Interestingly, Bi antisite(Bi) in
BiSe is an amphoteric dopant, acting as a donor when
0.119eV (the material is typical p-type) and as an acceptor when
0.251eV (the material is typical n-type). The formation energies
under different growth environments (such as Bi-rich or Se-rich) indicate that
under Se-rich condition, Se is the most stable native defect independent
of electron chemical potential . Under Bi-rich condition, Se vacancy
is the most stable native defect except for under the growth window as
0.262eV (the material is typical n-type) and
-0.459eV(Bi-rich), under such growth windows one
negative charged Bi is the most stable one.Comment: 7 pages, 4 figure
- …