264 research outputs found

    Reinforced Lin-Kernighan-Helsgaun Algorithms for the Traveling Salesman Problems

    Full text link
    TSP is a classical NP-hard combinatorial optimization problem with many practical variants. LKH is one of the state-of-the-art local search algorithms for the TSP. LKH-3 is a powerful extension of LKH that can solve many TSP variants. Both LKH and LKH-3 associate a candidate set to each city to improve the efficiency, and have two different methods, α\alpha-measure and POPMUSIC, to decide the candidate sets. In this work, we first propose a Variable Strategy Reinforced LKH (VSR-LKH) algorithm, which incorporates three reinforcement learning methods (Q-learning, Sarsa, Monte Carlo) with LKH, for the TSP. We further propose a new algorithm called VSR-LKH-3 that combines the variable strategy reinforcement learning method with LKH-3 for typical TSP variants, including the TSP with time windows (TSPTW) and Colored TSP (CTSP). The proposed algorithms replace the inflexible traversal operations in LKH and LKH-3 and let the algorithms learn to make a choice at each search step by reinforcement learning. Both LKH and LKH-3, with either α\alpha-measure or POPMUSIC, can be significantly improved by our methods. Extensive experiments on 236 widely-used TSP benchmarks with up to 85,900 cities demonstrate the excellent performance of VSR-LKH. VSR-LKH-3 also significantly outperforms the state-of-the-art heuristics for TSPTW and CTSP.Comment: arXiv admin note: text overlap with arXiv:2107.0687

    Segmentation of kidney and kidney tumor by cascaded fusion FCNs with soft-boundary regression

    Get PDF
    To produce reliable kidney and kidney tumor semantic segmentation, we proposed a two-stage method to automatically segment kidney and tumor. Specifically, in the first stage, to crop input into a small region, we train a small network to locate kidney and tumor with down-sampled image. In second stage, we train three types of networks to segment kidney, tumor, kidney and tumor respectively. Then we combine these networks together with ensemble method to produce reliable kidney and tumor segmentation. Our method can achieve an overall approximate score of 85.1% in DSC in Kits19 Challenge, with 96.9% for kidney and 73.3% for kidney tumor

    Association of IL-4 and IL-18 genetic polymorphisms with atopic dermatitis in Chinese children

    Get PDF
    BackgroundAtopic dermatitis (AD) is a common chronic inflammatory skin disease, adversely affecting nearly 20% of the pediatric population worldwide. Interleukin-4 (IL-4) and interleukin-18 (IL-18) are considered to be involved in the pathogenesis and development of AD. The aim of this study was to investigate the association of IL-4 and IL-18 gene polymorphisms with the susceptibility and severity of AD in Chinese children.MethodsSix candidate single nucleotide polymorphisms (SNPs) in IL-4 and IL-18 genes were genotyped through multi-PCR combined with next-generation sequencing in 132 AD children and 100 healthy controls, and all the analyses were performed on blood genome DNA.ResultsThe frequencies of G allele, CG genotype and CG + GG genotype of IL-4 rs2243283, as well as the haplotype IL-4/GTT (rs2243283-rs2243250-rs2243248) were all significantly decreased in AD patients compared with the controls [G vs. C: P = 0.033, OR = 0.59; CG vs. CC: P = 0.024, OR = 0.47; CG + GG vs. CC: P = 0.012, OR = 0.49; GTT vs. CCT: P = 0.011, OR = 0.65]. Moreover, the frequencies of A allele, AA genotype and AG + AA genotype of IL-18 rs7106524, along with the haplotype IL-18/CAA (rs187238-rs360718-rs7106524) were statistically increased in the severe AD patients (A vs. G: P < 0.001, OR = 2.79; AA vs. GG: P = 0.003, OR = 5.51; AG + AA vs. GG: P = 0.036, OR = 2.93; CAA vs. CAG: P = 0.001, OR = 2.86).ConclusionsOur findings suggested that genetic variation in IL-4 rs2243283 such as G allele, CG genotype and CG + GG genotype might confer the reduced susceptibility to AD in Chinese children. Furthermore, A allele, AA genotype and AG + AA genotype of IL-18 rs7106524 explored the strong association with severity in Chinese AD children

    Single Fasting Plasma Glucose Versus 75-g Oral Glucose-Tolerance Test in Prediction of Adverse Perinatal Outcomes::A Cohort Study

    Get PDF
    Background: There remains uncertainty regarding whether a single fasting glucose measurement is sufficient to predict risk of adverse perinatal outcomes. Methods: We included 12,594 pregnant women who underwent a 75-g oral glucose-tolerance test (OGTT) at 22–28 weeks' gestation in the Born in Guangzhou Cohort Study, China. Outcomes were large for gestational age (LGA) baby, cesarean section, and spontaneous preterm birth. We calculated the area under the receiver operator characteristic curves (AUCs) to assess the capacity of OGTT glucose values to predict adverse outcomes, and compared the AUCs of different components of OGTT. Results: 1325 women had a LGA baby (10.5%). Glucose measurements were linearly associated with LGA, with strongest associations for fasting glucose (odds ratio 1.37, 95% confidence interval 1.30–1.45). Weaker associations were observed for cesarean section and spontaneous preterm birth. Fasting glucose have a comparable discriminative power for prediction of LGA to the combination of fasting, 1 h, and 2 h glucose values during OGTT (AUCs, 0.611 vs. 0.614, P = 0.166). The LGA risk was consistently increased in women with abnormal fasting glucose (≥5.1 mmol/l), irrespective of 1 h or 2 h glucose levels. Conclusions: A single fasting glucose measurement performs comparably to 75-g OGTT in predicting risk of having a LGA baby

    Smilagenin Protects Dopaminergic Neurons in Chronic MPTP/Probenecid—Lesioned Parkinson’s Disease Models

    Get PDF
    Current therapies for Parkinson’s disease (PD) only offer limited symptomatic alleviation but fail to hamper the progress of the disease. Thus, it is imperative to establish new approaches aiming at protecting or reversing neurodegeneration in PD. Recent work elucidates whether smilagenin (abbreviated SMI), a steroidal sapogenin from traditional Chinese medicinal herbs, can take neuroprotective effect on dopaminergic neurons in a chronic model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) conjuncted with probenecid mice. We reported for the first time that SMI significantly improved the locomotor ability of chronic MPTP/probenecid–lesioned mice. SMI increased the tyrosine hydroxylase (TH) positive and Nissl positive neuron number in the substantia nigra pars compacta (SNpc), augmented striatal DA and its metabolites concentration and elevated striatal dopamine transporter density (DAT). In addition, dopamine receptor D2R not D1R was down-regulated by MPTP/probenecid and slightly raised by SMI prevention. What’s more, we discovered that SMI markedly elevated striatal glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) protein levels in SMI prevented mice. And we found that SMI increased GDNF and BDNF mRNA level by promoting CREB phosphorylation in 1-methyl-4-phenylpyridimium (MPP+) treated SH-SY5Y cells. The results illustrated that SMI could prevent the impairment of dopaminergic neurons in chronic MPTP/probenecid-induced mouse model

    Targeting glutamine metabolic reprogramming of SLC7A5 enhances the efficacy of anti-PD-1 in triple-negative breast cancer

    Get PDF
    BackgroundTriple-negative breast cancer (TNBC) is a heterogeneous disease that is characterized by metabolic disruption. Metabolic reprogramming and tumor cell immune escape play indispensable roles in the tumorigenesis that leads to TNBC.MethodsIn this study, we constructed and validated two prognostic glutamine metabolic gene models, Clusters A and B, to better discriminate between groups of TNBC patients based on risk. Compared with the risk Cluster A patients, the Cluster B patients tended to exhibit better survival outcomes and higher immune cell infiltration. In addition, we established a scoring system, the glutamine metabolism score (GMS), to assess the pattern of glutamine metabolic modification.ResultsWe found that solute carrier family 7 member 5 (SLC7A5), an amino acid transporter, was the most important gene and plays a vital role in glutamine metabolism reprogramming in TNBC cells. Knocking down SLC7A5 significantly inhibited human and mouse TNBC cell proliferation, migration, and invasion. In addition, downregulation of SLC7A5 increased CD8+ T-cell infiltration. The combination of a SLC7A5 blockade mediated via JPH203 treatment and an anti-programmed cell death 1 (PD-1) antibody synergistically increased the immune cell infiltration rate and inhibited tumor progression.ConclusionsHence, our results highlight the molecular mechanisms underlying SLC7A5 effects and lead to a better understanding of the potential benefit of targeting glutamine metabolism in combination with immunotherapy as a new therapy for TNBC

    Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation

    Get PDF
    Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis
    • …
    corecore