29 research outputs found

    Phosphoproteins regulated by heat stress in rice leaves

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (<it>Oryza sativa </it>L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored.</p> <p>Methods</p> <p>Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting.</p> <p>Results</p> <p>Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins.</p> <p>Conclusion</p> <p>Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H<sup>+</sup>-ATPase, remains unknown.</p

    Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study

    Get PDF
    BACKGROUND: Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. RESULTS: In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. CONCLUSIONS: Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users

    Novel bi-allelic variants of CHMP1A contribute to pontocerebellar hypoplasia type 8: additional clinical and genetic evidence

    Get PDF
    Pontocerebellar hypoplasia type 8(PCH8) is a rare neurodegenerative disorder, reportedly caused by pathogenic variants of the CHMP1A in autosomal recessive inheritance, and CHMP1A variants have also been implicated in other diseases, and yet none of the prenatal fetal features were reported in PCH8. In this study, we investigated the phenotype and genotype in a human subject with global developmental delay, including clinical data from the prenatal stage through early childhood. Prenatally, the mother had polyhydramnios, and the bilateral ventricles of the fetus were slightly widened. Postnatally, the infant was observed to have severely delayed psychomotor development and was incapable of visual tracking before 2 years old and could not fix on small objects. The young child had hypotonia, increased knee tendon reflex, as well as skeletal malformations, and dental crowding; she also had severe and recurrent pulmonary infections. Magnetic resonance imaging of the brain revealed a severe reduction of the cerebellum (vermis and hemispheres) and a thin corpus callosum. Through whole exome sequencing and whole genomics sequencing, we identified two novel compound heterozygous variations in CHMP1A [c.53 T &gt; C(p.Leu18Pro)(NM_002768.5) and exon 1 deletion region (NC_000016.10:g.89656392_89674382del)]. cDNA analysis showed that the exon1 deletion region led to the impaired expression, and functional verification with zebrafish embryos using base edition indicated variant c.53 T &gt; C (p.Leu18Pro), causing dysplasia of the cerebellum and pons. These results provide further evidence that CHMP1A variants in a recessive inheritance pattern contribute to the clinical characteristics of PCH8 and further expand our knowledge of the phenotype and genotype spectrum of PCH8

    Identification of Heat-Tolerant Genes in Non-Reference Sequences in Rice by Integrating Pan-Genome, Transcriptomics, and QTLs.

    Get PDF
    The availability of large-scale genomic data resources makes it very convenient to mine and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been constructed to provide insight into the genome diversity and functionality of different plants, which can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15 heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859 genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which were specifically present in the highly heat-resistant rice cultivars and located in the genic regions or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212 downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome resource is an important step towards the effective and efficient genetic improvement of heat stress resistance in rice to help meet the rapidly growing needs for improved rice productivity under different environmental stresses. These findings provide further insight into the functional validation of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant QTLs in rice

    Rice Stress-Resistant SNP Database.

    Get PDF
    BACKGROUND:Rice (Oryza sativa L.) yield is limited inherently by environmental stresses, including biotic and abiotic stresses. Thus, it is of great importance to perform in-depth explorations on the genes that are closely associated with the stress-resistant traits in rice. The existing rice SNP databases have made considerable contributions to rice genomic variation information but none of them have a particular focus on integrating stress-resistant variation and related phenotype data into one web resource. RESULTS:Rice Stress-Resistant SNP database (http://bioinformatics.fafu.edu.cn/RSRS) mainly focuses on SNPs specific to biotic and abiotic stress-resistant ability in rice, and presents them in a unified web resource platform. The Rice Stress-Resistant SNP (RSRS) database contains over 9.5 million stress-resistant SNPs and 797 stress-resistant candidate genes in rice, which were detected from more than 400 stress-resistant rice varieties. We incorporated the SNPs function, genome annotation and phenotype information into this database. Besides, the database has a user-friendly web interface for users to query, browse and visualize a specific SNP efficiently. RSRS database allows users to query the SNP information and their relevant annotations for individual variety or more varieties. The search results can be visualized graphically in a genome browser or displayed in formatted tables. Users can also align SNPs between two or more rice accessions. CONCLUSION:RSRS database shows great utility for scientists to further characterize the function of variants related to environmental stress-resistant ability in rice

    Selection of Candidate Genes Conferring Blast Resistance and Heat Tolerance in Rice through Integration of Meta-QTLs and RNA-Seq

    No full text
    Due to global warming, high temperature is a significant environmental stress for rice production. Rice (Oryza sativa L.), one of the most crucial cereal crops, is also seriously devastated by Magnaporthe oryzae. Therefore, it is essential to breed new rice cultivars with blast and heat tolerance. Although progress had been made in QTL mapping and RNA-seq analysis in rice in response to blast and heat stresses, there are few reports on simultaneously mining blast-resistant and heat-tolerant genes. In this study, we separately conducted meta-analysis of 839 blast-resistant and 308 heat-tolerant QTLs in rice. Consequently, 7054 genes were identified in 67 blast-resistant meta-QTLs with an average interval of 1.00 Mb. Likewise, 6425 genes were obtained in 40 heat-tolerant meta-QTLs with an average interval of 1.49 Mb. Additionally, using differentially expressed genes (DEGs) in the previous research and GO enrichment analysis, 55 DEGs were co-located on the common regions of 16 blast-resistant and 14 heat-tolerant meta-QTLs. Among, OsChib3H-c, OsJAMyb, Pi-k, OsWAK1, OsMT2b, OsTPS3, OsHI-LOX, OsACLA-2 and OsGS2 were the significant candidate genes to be further investigated. These results could provide the gene resources for rice breeding with excellent resistance to these 2 stresses, and help to understand how plants response to the combination stresses of blast fungus and high temperature

    Study on the Effect of the Copper Tailing Substrate with Different Treatments on the Growth of Tall Fescue (<i>Festuca arundinacea</i>)

    No full text
    The copper sulphide mining process would produce a large number of copper tailings that can be treated with different substrates so as to act as guest soil in the ecological reclamation of the mine. In order to reveal the influence of different copper tailing treatment substrates on plant growth, in this experiment, tall fescue (Festuca arundinacea) was planted under potted conditions for the purpose of exploring the effect of different exogenous substrates such as conditioning agents, sulfurized modified straw, effective microorganisms (EM), and high-density sludge (HDS) sediment on tall fescue height, biomass, chlorophyll, catalase (CAT) activity and Cu2+ transport under copper tailings substrate. Then, the results showed that the combined application of different exogenous substrates (conditioning agents, EM, sulfurized modified straw, and HDS sediment) reduced the pH of the copper tailing substrate to varying degrees, with a decrease of 5–21%. Moreover, compared with the control group and other treatments, the combined treatment of conditioning agents, sulfurized modified straw, and EM has a significant impact on the biomass, plant height, chlorophyll content, CAT activity, and other physiological indicators of tall fescue and can effectively reduce Cu2+ that is toxic to tall fescue in copper tailing

    Fabrication and Soft Magnetic Properties of Fe–Si–Cr Composites with Double-Insulating Layers Suitable for High-Frequency Power Applications

    No full text
    Soft magnetic composites (SMCs) are composed of alloy materials with the core and insulating layers as the shell. These composites exhibit high saturation magnetic sensitivity and low hysteresis loss, making them a promising material for various applications. The investigation of double layers is considered valuable as it can effectively address the issues of low resistivity and high dynamic loss that arise from non-uniform insulating layers in SMCs. In this study, Fe-Si-Cr/SiO2 particles with a core–shell heterostructure were produced via chemical vapor deposition (CVD). The Fe-Si-Cr/SiO2 materials were coated with different weight percentages (1–6%) of sodium silicate (SS). Subsequently, Fe-Si-Cr-based SMCs were synthesized through high-pressure molding and heat treatment. The effect of the SS weight percentage on microscopic changes and magnetic characteristics was investigated. These findings indicated that a concentration of 4 wt% of SS was the most effective at enhancing magnetic characteristics. The resultant SMCs exhibited high resistivity (21.07 mΩ·cm), the lowest total loss (P10 mt/300 kHz of 44.23 W/kg), a relatively high saturation magnetization (181.8 emu/g), and permeability (35.9). Furthermore, it was observed that the permeability exhibited stabilization at lower frequencies. According to these findings, the combination of CVD and double layers could lead to the further development of SMCs in a variety of applications
    corecore