1,012 research outputs found
Robust paramagnetism in Bi2-xMxRu2O7 (M=Mn,Fe,Co,Ni,Cu) pyrochlore
We report physical property characterization of Bi2-xMxRu2O7 pyrochlores,
including magnetic suseptibility, resistivity, and Seebeck coefficients. The
solid solution exists up to x=0.5 for (M=Cu,Ni,Co) and up to x=0.1 for
(M=Fe,Mn). None of the doped materials exhibit ferromagnetism or any localized
ruthenium moment behavior. Instead we find the Ru-O and Bi-O sublattices to be
essentially independent, with any magnetism resulting from the unpaired
transition metal dopant spins. Cobalt substitution for bismuth results in
localized Co{2+}, and low temperature spin-glass transitions in several cases.
Nickel moments on the pyrochlore lattice display properties intermediate to
localized and itinerant. Finally, copper doping results in only an enhancement
of the Pauli metallic density of states.Comment: submitted, Phys. Rev.
Conductance of a Quantum Point Contact in the presence of a Scanning Probe Microscope Tip
Using the recursive Green's function technique, we study the coherent
electron conductance of a quantum point contact in the presence of a scanning
probe microscope tip. Images of the coherent fringe inside a quantum point
contact for different widths are obtained. It is found that the conductance of
a specific channel is reduced while other channels are not affected as long as
the tip is located at the positions correspending to that channel. Moreover,
the coherent fringe is smoothed out by increasing the temperature or the
voltage across the device. Our results are consistent with the experiments
reported by Topinka et al.[Science 289, 2323 (2000)].Comment: 5 page
Expression of hemagglutinin protein from the avian influenza virus H5N1 in a baculovirus/insect cell system significantly enhanced by suspension culture
10.1186/1471-2180-6-16BMC Microbiology
Dislocation Loops in Proton Irradiated Uranium-Nitrogen-Oxygen System
In this study, we investigated the type of dislocation loops formed in the proton-irradiated uranium-nitrogen-oxygen (U-N-O) system, which involves uranium mononitride (UN), uranium sesquinitride (α-U2N3), and uranium dioxide (UO2) phases. The dislocation loop formation is examined using specimens irradiated at 400°C and 710°C. Based on the detailed transmission-based electron microscopy characterization with i) the morphology-based on-zone and ii) the invisibility-criterion based two-beam condition imaging techniques, only a single type of dislocation loop in each phase is found: a/2⟨110⟩, a/2⟨111⟩, or a/3⟨111⟩ dislocation loops in UN, α-U2N3, and UO2 phases, respectively. Molecular statics calculations for the formation energy of perfect and faulted dislocation loops in the UN phase indicate a critical loop size of ∼6 nm, above which perfect loops are thermodynamically favorable. This could explain the absence of faulted loops in the experimental observation of the irradiated UN phase at two temperatures. This work will enhance the understanding of irradiation induced microstructural evolution for uranium mononitride as an advanced nuclear fuel for the next-generation nuclear reactors.</p
The effects of weather on oilseed rape (OSR) yield in China: future implications of climate change
Understanding the role of climatic factors on crop yields is essential in predicting the future impact of climate change. In order to understand the influence of climatic factors on OSR, detailed farm-level panel data from 2566 farms across 67 counties of the 6 major OSR production regions in China, from the surveys conducted by the national OSR industry project between 2008 and 2013, were used to examine the contribution of changes in selected climatic variables between 2008 and 2013 to yield variation. Spatial and temporal patterns of the relationships between OSR yield, climatic factors were estimated together with the effects of farmer adaptation and management practices on yield variability. The analysis revealed that yields in the low-latitude production regions were more sensitive to temperature increases and likely to decline. Precipitation was the most influential factor on yield at the first two growth stages; temperature and sunshine hours were most important at the third and fourth growth stages, respectively. Labour input was the most influential management factor affecting yields compared with fertilizer and other inputs. The study concludes that projection of future climate change impacts will need inter alia to incorporate more sophisticated and detailed measures of climatic variables than simple means of temperature and precipitation, incorporating timing in relation to plant growth and yield
Simulations of the Static Friction Due to Adsorbed Molecules
The static friction between crystalline surfaces separated by a molecularly
thin layer of adsorbed molecules is calculated using molecular dynamics
simulations. These molecules naturally lead to a finite static friction that is
consistent with macroscopic friction laws. Crystalline alignment, sliding
direction, and the number of adsorbed molecules are not controlled in most
experiments and are shown to have little effect on the friction. Temperature,
molecular geometry and interaction potentials can have larger effects on
friction. The observed trends in friction can be understood in terms of a
simple hard sphere model.Comment: 13 pages, 13 figure
Neutrino Clustering in the Galaxy with a Global Monopole
In spherically symmetric, static spacetime, we show that only j=1/2 fermions
can satisfy both Einstein's field equation and Dirac's equation. It is also
shown that neutrinos are able to have effective masses and cluster in the
galactic halo when they are coupled to a global monopole situated at the
galactic core. Astronomical implications of the results are discussed.Comment: 8 pages, Revtex
- …