1 research outputs found

    Comparative Performance of Machine-Learning and Deep-Learning Algorithms in Predicting Gas–Liquid Flow Regimes

    No full text
    Gas–liquid flow is a significant phenomenon in various engineering applications, such as in nuclear reactors, power plants, chemical industries, and petroleum industries. The prediction of the flow patterns is of great importance for designing and analyzing the operations of two-phase pipeline systems. The traditional numerical and empirical methods that have been used for the prediction are known to result in a high inaccuracy for scale-up processes. That is why various artificial intelligence-based (AI-based) methodologies are being applied, at present, to predict the gas–liquid flow regimes. We focused in the current study on a thorough comparative analysis of machine learning (ML) and deep learning (DL) in predicting the flow regimes with the application of a diverse set of ML and DL frameworks to a database comprising 11,837 data points, which were collected from thirteen independent experiments. During the pre-processing, the big data analysis was performed to analyze the correlations among the parameters and extract important features. The comparative analysis of the AI-based models’ performances was conducted using precision, recall, F1-score, accuracy, Cohen’s kappa, and receiver operating characteristics curves. The extreme gradient boosting method was identified as the optimum model for predicting the two-phase flow regimes in inclined or horizontal pipelines
    corecore