45 research outputs found

    A COMPARISON OF THE BILATERAL, DYNAMIC Q-ANGLE IN FEMALES

    Get PDF
    The purpose of this study was to investigate the Q-angle during the stance phase of walking and jogging. Twenty-one females were recruited to participate in the study. Subjects were filmed walking and jogging on the treadmill and the bilateral, Q-angle measurements were calculated for heel-strike (HS), mid-stance (MS), and toe-off (TO) at each speed. Significant differences (p < 0.05) in the Q-angle were found between HS and TO and between MS and TO for both legs during walking. There were no significant differences found during jogging for the left leg; however, there were significant differences in the right leg from MS to TO. A comparison of the Q-angle values showed that HS, MS, and TO were significantly different between the right and left legs for walking, and only MS and TO were significantly different for jogging

    Reliability of Bell’s Test Conducted with Virtual Reality

    Get PDF
    Cancellation tasks are commonly used assessment tools to detect unilateral neglect. Bell’s Test, one of the most commonly administered cancellation tasks, requires individuals to quickly and accurately identify “bells” randomly placed in an array of symbols. The reliability of Bells Test conducted with a paper and pencil is well established. A newly developed, commercial software application, allows Bell’s Test to be administered in fully immersive virtual reality environment. PURPOSE: The purpose of this study was to measure the reliability of the Bell’s Test using a virtual reality (VR) system and to establish the level of agreement between the pen-paper and VR administration. METHODS: Fourteen apparently healthy individuals between the age of 24 – 73y volunteered (47.9±20.7y; 166.0±5.2cm; 77.5±16.3kg). Subjects were excluded if they had a history of concussion or had perceptual or visual deficits. Participants completed Bell’s Test a total of four times. The first time, it was completed with a pen-paper (PP). Then, participants completed an initial assessment in VR (VRbase); the same test was administered again in VR one-hour (PostVR1hr) and one-week (PostVR1wk) post baseline. Realization time, total time, and the number of errors committed in the right and left field of view were recorded. Cronbach’s alpha was computed on realization and total time in all VR conditions. Additionally, an ANOVA with repeated measures was used to determine differences in PP, VRbase, PostVR1HR, and PostVR1Wk. The Holms-Sidak method was used to identify pairwise differences. Alpha was set at pa priori. RESULTS: Reliability for realization time for the Bell’s test conducted in VR was acceptable (α=0.79). There was, however, a significant difference between trials (F=6.65; p=0.013). VRbase (29.25±8.11s) was significantly different than PostVR1HR (15.52±4.30; p=0.006). and VRpost1wk (21.24±5.89s; p=0.01). Additionally, PP realization time (15.31±4.25s) was significantly different than PostVR1HR (p=0.02) and PostVR1WK (p=0.03). Reliability for total time for the Bell’s test conducted in VR was good. (α=0.82). There was not a significant difference between the trials (F=4.34; p=0.06) for VRbase(24.1±6.7s), PostVR1HR (45.44±12.6) or VRpost1wk(p=0.06). However, there was a significant difference found in PPtotal time taken and VR1wk with the (p=0.03). The average number of left side omitted bells was 0.50±0.65; 0.07±0.26; 0.07±0.26; 0.14±0.36 for PP, VRbase, Post VR1HR, and PostVR1WK; respectively. The number of bells omitted on the right side was 0.50±0.85, 0.21±0.57, 0.14±0.36, for 0.14±0.36 for PP, VRbase, PostVR1HR, and PostVR1WK; respectively. CONCLUSION: These data indicate that the reliability of the Bell’s Test for the realization time is acceptable, and the total time reliability was good in the virtual reality system. Healthy individuals performing the Bell’s Test in VR show slight improvements one hour after baseline, but there was no difference after one week. More data are needed within different age groups to determine reliability in young and older individuals. Additionally, future studies are required to determine the reliability of Bell’s Test in VR for individuals suffering from neurological injuries or diseases

    Bifactor Model of the Sport Concussion Assessment Tool Symptom Checklist: Replication and Invariance Across Time in the CARE Consortium Sample

    Get PDF
    Background: Identifying separate dimensions of concussion symptoms may inform a precision medicine approach to treatment. It was previously reported that a bifactor model identified distinct acute postconcussion symptom dimensions. Purpose: To replicate previous findings of a bifactor structure of concussion symptoms in the Concussion Assessment Research and Education (CARE) Consortium sample, examine measurement invariance from pre- to postinjury, and evaluate whether factors are associated with other clinical and biomarker measures. Study design: Cohort study (Diagnosis); Level of evidence, 2. Methods: Collegiate athletes were prospectively evaluated using the Sport Concussion Assessment Tool-3 (SCAT-3) during preseason (N = 31,557); 2789 were followed at <6 hours and 24 to 48 hours after concussion. Item-level SCAT-3 ratings were analyzed using exploratory and confirmatory factor analyses. Bifactor and higher-order models were compared for their fit and interpretability. Measurement invariance tested the stability of the identified factor structure across time. The association between factors and criterion measures (clinical and blood-based markers of concussion severity, symptom duration) was evaluated. Results: The optimal structure for each time point was a 7-factor bifactor model: a General factor, on which all items loaded, and 6 specific factors-Vestibulo-ocular, Headache, Sensory, Fatigue, Cognitive, and Emotional. The model manifested strict invariance across the 2 postinjury time points but only configural invariance from baseline to postinjury. From <6 to 24-48 hours, some dimensions increased in severity (Sensory, Fatigue, Emotional), while others decreased (General, Headache, Vestibulo-ocular). The factors correlated with differing clinical and biomarker criterion measures and showed differing patterns of association with symptom duration at different time points. Conclusion: Bifactor modeling supported the predominant unidimensionality of concussion symptoms while revealing multidimensional properties, including a large dominant General factor and 6 independent factors: Headache, Vestibulo-ocular, Sensory, Cognitive, Fatigue, and Emotional. Unlike the widely used SCAT-3 symptom severity score, which declines gradually after injury, the bifactor model revealed separable symptom dimensions that have distinct trajectories in the acute postinjury period and different patterns of association with other markers of injury severity and outcome. Clinical relevance: The SCAT-3 total score remains a valuable, robust index of overall concussion symptom severity, and the specific factors identified may inform management strategies. Because some symptom dimensions continue to worsen in the first 24 to 48 hours after injury (ie, Sensory, Fatigue, Emotional), routine follow-up in this time frame may be valuable to ensure that symptoms are managed effectively

    Creating Your Own Space: How to make Centers and Institutes a reality

    No full text
    This presentation includes background, foundational, and structural aspects of creating professional environments for service and research in professional settings. Many times, the infrastructure of a university, clinic, or hospital setting is a rich environment to cultivate interdisciplinary specialty spaces. How to effectively develop an idea and present it to leadership is the cornerstone of creating your own space with appropriate financial support

    Clinical Reaction-Time Performance Factors in Healthy Collegiate Athletes

    No full text
    Context: In the absence of baseline testing, normative data may be used to interpret postconcussion scores on the clinical reaction-time test (RTclin). However, to provide normative data, we must understand the performance factors associated with baseline testing. Objective: To explore performance factors associated with baseline RTclin from among candidate variables representing demographics, medical and concussion history, self-reported symptoms, sleep, and sport-related features. Design: Cross-sectional study. Setting: Clinical setting (eg, athletic training room). Patients or other participants: A total of 2584 National Collegiate Athletic Association student-athletes (n = 1206 females [47%], 1377 males [53%], and 1 unreported (<0.1%); mass = 76.7 ± 18.7 kg; height = 176.7 ± 11.3 cm; age = 19.0 ± 1.3 years) from 3 institutions participated in this study as part of the Concussion Assessment, Research and Education Consortium. Main outcome measure(s): Potential performance factors were sex; race; ethnicity; dominant hand; sport type; number of prior concussions; presence of anxiety, learning disability, attention-deficit disorder or attention-deficit/hyperactivity disorder, depression, or migraine headache; self-reported sleep the night before the test; mass; height; age; total number of symptoms; and total symptom burden at baseline. The primary study outcome measure was mean baseline RTclin. Results: The overall RTclin was 202.0 ± 25.0 milliseconds. Female sex (parameter estimate [B] = 8.6 milliseconds, P < .001, Cohen d = 0.54 relative to male sex), black or African American race (B = 5.3 milliseconds, P = .001, Cohen d = 0.08 relative to white race), and limited-contact (B = 4.2 milliseconds, P < .001, Cohen d = 0.30 relative to contact) or noncontact (B = 5.9 milliseconds, P < .001, Cohen d = 0.38 relative to contact) sport participation were associated with slower RTclin. Being taller was associated with a faster RTclin, although this association was weak (B = -0.7 milliseconds, P < .001). No other predictors were significant. When adjustments are made for sex and sport type, the following normative data may be considered (mean ± standard deviation): female, noncontact (211.5 ± 25.8 milliseconds), limited contact (212.1 ± 24.3 milliseconds), contact (203.7 ± 21.5 milliseconds); male, noncontact (199.4 ± 26.7 milliseconds), limited contact (196.3 ± 23.9 milliseconds), contact (195.0 ± 23.8 milliseconds). Conclusions: Potentially clinically relevant differences existed in RTclin for sex and sport type. These results provide normative data adjusting for these performance factors
    corecore