48 research outputs found

    A New Formula for Predicting Solar Cycles

    Full text link
    A new formula for predicting solar cycles based on the current theoretical understanding of the solar cycle from flux transport dynamo is presented. Two important processes---fluctuations in the Babcock-Leighton mechanism and variations in the meridional circulation, which are believed to be responsible for irregularities of the solar cycle---are constrained by using observational data. We take the polar field near minima of the cycle as a measure of the randomness in the Babcock-Leighton process, and the decay rate near the minima as a consequence of the change in meridional circulation. We couple these two observationally derived quantities into a single formula to predict the amplitude of the future solar cycle. Our new formula suggests that the cycle 25 would be a moderate cycle. Whether this formula for predicting the future solar cycle can be justified theoretically is also discussed using simulations from the flux transport dynamo model.Comment: 12 pages, 6 figures, Accepted for publication in Ap

    A theoretical model of the variation of the meridional circulation with the solar cycle

    Full text link
    Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ\phi component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis how the observed inward flow towards the active regions may be produced.Comment: 15 pages, 11 figures, accepted for publication in MNRA

    A theoretical study of the build-up of the Sun's polar magnetic field by using a 3D kinematic dynamo model

    Full text link
    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport (SFT) models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres.We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely-signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale's polarity law would have on the polar field. We find that there would be some effect---especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle---though the effect is not very dramatic.Comment: 18 pages, 18 figures, published in Ap

    Is a deep one-cell meridional circulation essential for the flux transport Solar Dynamo?

    Full text link
    The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow---both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. Also, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.Comment: 12 pages, 13 figure

    Incorporating Surface Convection into a 3D Babcock-Leighton Solar Dynamo Model

    Full text link
    The observed convective flows on the photosphere (e.g., supergranulation, granulation) play a key role in the Babcock-Leighton (BL) process to generate large-scale polar fields from sunspots fields. In most surface flux transport (SFT) and BL dynamo models, the dispersal and migration of surface fields is modeled as an effective turbulent diffusion. Recent SFT models have incorporated explicit, realistic convective flows in order to improve the fidelity of convective transport but, to our knowledge, this has not yet been implemented in previous BL models. Since most Flux-Transport (FT)/BL models are axisymmetric, they do not have the capacity to include such flows. We present the first kinematic 3D FT/BL model to explicitly incorporate realistic convective flows based on solar observations. Though we describe a means to generalize these flows to 3D, we find that the kinematic small-scale dynamo action they produce disrupts the operation of the cyclic dynamo. Cyclic solution is found by limiting the convective flow to act only on the vertical radial component of the magnetic field. The results obtained are generally in good agreement with the observed surface flux evolution and with non-convective models that have a turbulent diffusivity on the order of 3×10123 \times 10^{12} cm2^2 s1^{-1} (300 km2^2 s1^{-1}). However, we find that the use of a turbulent diffusivity underestimates the dynamo efficiency, producing weaker mean fields and shorter cycle than in the convective models. Also, the convective models exhibit mixed polarity bands in the polar regions that have no counterpart in solar observations. Also, the explicitly computed turbulent electromotive force (emf) bears little resemblance to a diffusive flux. We also find that the poleward migration speed of poloidal flux is determined mainly by the meridional flow and the vertical diffusion.Comment: 21 pages, 14 figures, Revised version is submitted to Ap

    Incorporating Surface Convection into a 3D Babcock-Leighton Solar Dynamo Model

    Full text link
    The observed convective flows on the photosphere (e.g., supergranulation, granulation) play a key role in the Babcock-Leighton (BL) process to generate large-scale polar fields from sunspots fields. In most surface flux transport (SFT) and BL dynamo models, the dispersal and migration of surface fields is modeled as an effective turbulent diffusion. Recent SFT models have incorporated explicit, realistic convective flows in order to improve the fidelity of convective transport but, to our knowledge, this has not yet been implemented in previous BL models. Since most Flux-Transport (FT)/BL models are axisymmetric, they do not have the capacity to include such flows. We present the first kinematic 3D FT/BL model to explicitly incorporate realistic convective flows based on solar observations. Though we describe a means to generalize these flows to 3D, we find that the kinematic small-scale dynamo action they produce disrupts the operation of the cyclic dynamo. Cyclic solution is found by limiting the convective flow to act only on the vertical radial component of the magnetic field. The results obtained are generally in good agreement with the observed surface flux evolution and with non-convective models that have a turbulent diffusivity on the order of 3×10123 \times 10^{12} cm2^2 s1^{-1} (300 km2^2 s1^{-1}). However, we find that the use of a turbulent diffusivity underestimates the dynamo efficiency, producing weaker mean fields and shorter cycle than in the convective models. Also, the convective models exhibit mixed polarity bands in the polar regions that have no counterpart in solar observations. Also, the explicitly computed turbulent electromotive force (emf) bears little resemblance to a diffusive flux. We also find that the poleward migration speed of poloidal flux is determined mainly by the meridional flow and the vertical diffusion.Comment: 21 pages, 14 figures, Revised version is submitted to Ap
    corecore