2 research outputs found
Modeling fibrotic alveolar transitional cells with pluripotent stem cell-derived alveolar organoids
Repeated injury of the lung epithelium is proposed to be the main driver of idiopathic pulmonary fibrosis (IPF). However, available therapies do not specifically target the epithelium and human models of fibrotic epithelial damage with suitability for drug discovery are lacking. We developed a model of the aberrant epithelial reprogramming observed in IPF using alveolar organoids derived from human-induced pluripotent stem cells stimulated with a cocktail of pro-fibrotic and inflammatory cytokines. Deconvolution of RNA-seq data of alveolar organoids indicated that the fibrosis cocktail rapidly increased the proportion of transitional cell types including the KRT5-/KRT17+ aberrant basaloid phenotype recently identified in the lungs of IPF patients. We found that epithelial reprogramming and extracellular matrix (ECM) production persisted after removal of the fibrosis cocktail. We evaluated the effect of the two clinically approved compounds for IPF, nintedanib and pirfenidone, and found that they reduced the expression of ECM and pro-fibrotic mediators but did not completely reverse epithelial reprogramming. Thus, our system recapitulates key aspects of IPF and is a promising system for drug discovery
A Disintegrin and A Metalloproteinase-9 (ADAM9):A novel proteinase culprit with multifarious contributions to chronic obstructive pulmonary disease
INTRODUCTION: Proteinases with a disintegrin and a metalloproteinase domain (ADAMs) have not been well studied in COPD. We investigated whether ADAM9 is linked to COPD in humans and mice.METHODS: ADAM9 blood and lung levels were measured in COPD patients versus controls, and air- versus cigarette smoke (CS)-exposed wild-type (WT) mice. WT and Adam9-/- mice were exposed to air or CS for 1-6 months, and COPD-like lung pathologies were measured.RESULTS: ADAM9 staining was increased in lung epithelial cells and macrophages in smokers and even more so in COPD patients and correlated directly with pack-year smoking history and inversely with airflow obstruction and/or FEV1 % predicted. Bronchial epithelial cell ADAM9 mRNA levels were higher in COPD patients than controls and correlated directly with pack-year smoking history. Plasma, BALF and sputum ADAM9 levels were similar in COPD patients and controls. CS exposure increased Adam9 levels in WT murine lungs. Adam9-/- mice were protected from emphysema development, small airway fibrosis, and airway mucus metaplasia. CS-exposed Adam9-/- mice had reduced lung macrophage counts, alveolar septal cell apoptosis, lung elastin degradation, and shedding of VEGFR2 and EGFR in BALF samples. Recombinant ADAM9 sheds EGF and VEGF receptors from epithelial cells to reduce activation of the Akt pro-survival pathway and increase cellular apoptosis.CONCLUSIONS: ADAM9 levels are increased in COPD lungs and linked to key clinical variables. Adam9 promotes emphysema development, and large and small airway disease in mice. Inhibition of ADAM9 could be a therapeutic approach for multiple COPD phenotypes.</p