4 research outputs found
Stellar ArAr reactions and their effect on light neutron-rich nuclide synthesis
The ArAr ( = 35 d) and
ArAr (269 y) reactions were studied for the first time
with a quasi-Maxwellian ( keV) neutron flux for Maxwellian Average
Cross Section (MACS) measurements at stellar energies. Gas samples were
irradiated at the high-intensity Soreq applied research accelerator
facility-liquid-lithium target neutron source and the Ar/Ar and
Ar/Ar ratios in the activated samples were determined by
accelerator mass spectrometry at the ATLAS facility (Argonne National
Laboratory). The Ar activity was also measured by low-level counting at
the University of Bern. Experimental MACS of Ar and Ar, corrected
to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb,
respectively, differing from the theoretical and evaluated values published to
date by up to an order of magnitude. The neutron capture cross sections of
Ar are relevant to the stellar nucleosynthesis of light neutron-rich
nuclides; the two experimental values are shown to affect the calculated mass
fraction of nuclides in the region A=36-48 during the weak -process. The new
production cross sections have implications also for the use of Ar and
Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys.
Rev. Let