296 research outputs found

    Flux limiting due to electron impact excitation energy loss

    Get PDF

    An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\'en waves in burning plasmas

    Full text link
    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\'enic modes driven by energetic particles, such as kinetic beta induced Alfv\'en eigenmodes in tokamak fusion plasmas

    Free streaming in mixed dark matter

    Full text link
    Free streaming in a \emph{mixture} of collisionless non-relativistic dark matter (DM) particles is studied by implementing methods from the theory of multicomponent plasmas. The mixture includes Fermionic, condensed and non condensed Bosonic particles decoupling in equilibrium while relativistic, heavy non-relativistic thermal relics (WIMPs), and sterile neutrinos that decouple \emph{out of equilibrium} when they are relativistic. The free-streaming length λfs\lambda_{fs} is obtained from the marginal zero of the gravitational polarization function, which separates short wavelength Landau-damped from long wavelength Jeans-unstable \emph{collective} modes. At redshift zz we find 1λfs2(z)=1(1+z)[0.071kpc]2∑aνagd,a2/3(ma/keV)2Ia \frac{1}{\lambda^2_{fs}(z)}= \frac{1}{(1+z)} \big[\frac{0.071}{\textrm{kpc}} \big]^2 \sum_{a}\nu_a g^{2/3}_{d,a}({m_a}/{\mathrm{keV}})^2 I_a ,where 0≤νa≤10\leq \nu_a \leq 1 are the \emph{fractions} of the respective DM components of mass mam_a that decouple when the effective number of ultrarelativistic degrees of freedom is gd,ag_{d,a}, and IaI_a only depend on the distribution functions at decoupling, given explicitly in all cases. If sterile neutrinos produced either resonantly or non-resonantly that decouple near the QCD scale are the \emph{only} DM component,we find λfs(0)≃7kpc(keV/m)\lambda_{fs}(0) \simeq 7 \mathrm{kpc} (\mathrm{keV}/m) (non-resonant), λfs(0)≃1.73kpc(keV/m)\lambda_{fs}(0) \simeq 1.73 \mathrm{kpc} (\mathrm{keV}/m) (resonant).If WIMPs with mwimp≳100GeVm_{wimp} \gtrsim 100 \mathrm{GeV} decoupling at Td≳10MeVT_d \gtrsim 10 \mathrm{MeV} are present in the mixture with νwimp≫10−12\nu_{wimp} \gg 10^{-12},λfs(0)≲6.5×10−3pc\lambda_{fs}(0) \lesssim 6.5 \times 10^{-3} \mathrm{pc} is \emph{dominated} by CDM. If a Bose Einstein condensate is a DM component its free streaming length is consistent with CDM because of the infrared enhancement of the distribution function.Comment: 19 pages, 2 figures. More discussions same conclusions and results. Version to appear in Phys. Rev.

    Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems

    Full text link
    Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase-mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show that the textbook picture of phase-mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Amp\`ere system

    Understanding the effect of sheared flow on microinstabilities

    Full text link
    The competition between the drive and stabilization of plasma microinstabilities by sheared flow is investigated, focusing on the ion temperature gradient mode. Using a twisting mode representation in sheared slab geometry, the characteristic equations have been formulated for a dissipative fluid model, developed rigorously from the gyrokinetic equation. They clearly show that perpendicular flow shear convects perturbations along the field at a speed we denote by McsMc_s (where csc_s is the sound speed), whilst parallel flow shear enters as an instability driving term analogous to the usual temperature and density gradient effects. For sufficiently strong perpendicular flow shear, M>1M >1, the propagation of the system characteristics is unidirectional and no unstable eigenmodes may form. Perturbations are swept along the field, to be ultimately dissipated as they are sheared ever more strongly. Numerical studies of the equations also reveal the existence of stable regions when M<1M < 1, where the driving terms conflict. However, in both cases transitory perturbations exist, which could attain substantial amplitudes before decaying. Indeed, for M≫1M \gg 1, they are shown to exponentiate M\sqrt{M} times. This may provide a subcritical route to turbulence in tokamaks.Comment: minor revisions; accepted to PPC
    • …
    corecore