296 research outputs found
Recommended from our members
Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas
A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfveacutenic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfveacuten mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described.Institute for Fusion Studie
An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\'en waves in burning plasmas
Adopting the theoretical framework for the generalized fishbonelike
dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic
simulation model has been derived analytically by taking into account both
thermal ion compressibility and diamagnetic effects in addition to energetic
particle kinetic behaviors. The extended model has been used for implementing
an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to
study thermal ion kinetic effects on Alfv\'enic modes driven by energetic
particles, such as kinetic beta induced Alfv\'en eigenmodes in tokamak fusion
plasmas
Free streaming in mixed dark matter
Free streaming in a \emph{mixture} of collisionless non-relativistic dark
matter (DM) particles is studied by implementing methods from the theory of
multicomponent plasmas. The mixture includes Fermionic, condensed and non
condensed Bosonic particles decoupling in equilibrium while relativistic, heavy
non-relativistic thermal relics (WIMPs), and sterile neutrinos that decouple
\emph{out of equilibrium} when they are relativistic. The free-streaming length
is obtained from the marginal zero of the gravitational
polarization function, which separates short wavelength Landau-damped from long
wavelength Jeans-unstable \emph{collective} modes. At redshift we find ,where are the \emph{fractions} of the respective DM components of mass
that decouple when the effective number of ultrarelativistic degrees of
freedom is , and only depend on the distribution functions at
decoupling, given explicitly in all cases. If sterile neutrinos produced either
resonantly or non-resonantly that decouple near the QCD scale are the
\emph{only} DM component,we find (non-resonant), (resonant).If WIMPs with
decoupling at are present in the mixture with
, is \emph{dominated} by CDM. If a Bose Einstein condensate is a DM
component its free streaming length is consistent with CDM because of the
infrared enhancement of the distribution function.Comment: 19 pages, 2 figures. More discussions same conclusions and results.
Version to appear in Phys. Rev.
Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems
Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most
fundamental concepts in plasma physics. While the former describes the
surprising damping of linear plasma waves in a collisionless plasma, the latter
describes exact undamped nonlinear solutions of the Vlasov equation. There does
exist a relationship between the two: Landau damping can be described as the
phase-mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which
can be viewed as BGK modes in the linear limit. While these concepts have been
around for a long time, unexpected new results are still being discovered. For
Landau damping, we show that the textbook picture of phase-mixing is altered
profoundly in the presence of collision. In particular, the continuous spectrum
of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum,
even in the limit of zero collision. Furthermore, we show that these discrete
eigenmodes form a complete set of solutions. Landau-damped solutions are then
recovered as true eigenmodes (which they are not in the collisionless theory).
For BGK modes, our interest is motivated by recent discoveries of electrostatic
solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is
quite mature, there appear to be no exact three-dimensional solutions in the
literature (except for the limiting case when the magnetic field is
sufficiently strong so that one can apply the guiding-center approximation). We
show, in fact, that two- and three-dimensional solutions that depend only on
energy do not exist. However, if solutions depend on both energy and angular
momentum, we can construct exact three-dimensional solutions for the
unmagnetized case, and two-dimensional solutions for the case with a finite
magnetic field. The latter are shown to be exact, fully electromagnetic
solutions of the steady-state Vlasov-Poisson-Amp\`ere system
Understanding the effect of sheared flow on microinstabilities
The competition between the drive and stabilization of plasma
microinstabilities by sheared flow is investigated, focusing on the ion
temperature gradient mode. Using a twisting mode representation in sheared slab
geometry, the characteristic equations have been formulated for a dissipative
fluid model, developed rigorously from the gyrokinetic equation. They clearly
show that perpendicular flow shear convects perturbations along the field at a
speed we denote by (where is the sound speed), whilst parallel
flow shear enters as an instability driving term analogous to the usual
temperature and density gradient effects. For sufficiently strong perpendicular
flow shear, , the propagation of the system characteristics is
unidirectional and no unstable eigenmodes may form. Perturbations are swept
along the field, to be ultimately dissipated as they are sheared ever more
strongly. Numerical studies of the equations also reveal the existence of
stable regions when , where the driving terms conflict. However, in both
cases transitory perturbations exist, which could attain substantial amplitudes
before decaying. Indeed, for , they are shown to exponentiate
times. This may provide a subcritical route to turbulence in
tokamaks.Comment: minor revisions; accepted to PPC
- …