8 research outputs found

    NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation

    Full text link
    Complex computational models are often designed to simulate real-world physical phenomena in many scientific disciplines. However, these simulation models tend to be computationally very expensive and involve a large number of simulation input parameters which need to be analyzed and properly calibrated before the models can be applied for real scientific studies. We propose a visual analysis system to facilitate interactive exploratory analysis of high-dimensional input parameter space for a complex yeast cell polarization simulation. The proposed system can assist the computational biologists, who designed the simulation model, to visually calibrate the input parameters by modifying the parameter values and immediately visualizing the predicted simulation outcome without having the need to run the original expensive simulation for every instance. Our proposed visual analysis system is driven by a trained neural network-based surrogate model as the backend analysis framework. Surrogate models are widely used in the field of simulation sciences to efficiently analyze computationally expensive simulation models. In this work, we demonstrate the advantage of using neural networks as surrogate models for visual analysis by incorporating some of the recent advances in the field of uncertainty quantification, interpretability and explainability of neural network-based models. We utilize the trained network to perform interactive parameter sensitivity analysis of the original simulation at multiple levels-of-detail as well as recommend optimal parameter configurations using the activation maximization framework of neural networks. We also facilitate detail analysis of the trained network to extract useful insights about the simulation model, learned by the network, during the training process.Comment: Published at IEEE Transactions on Visualization and Computer Graphic

    Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models

    No full text

    Information Guided Exploration of Scalar Values and Isocontours in Ensemble Datasets

    No full text
    Uncertainty of scalar values in an ensemble dataset is often represented by the collection of their corresponding isocontours. Various techniques such as contour-boxplot, contour variability plot, glyphs and probabilistic marching-cubes have been proposed to analyze and visualize ensemble isocontours. All these techniques assume that a scalar value of interest is already known to the user. Not much work has been done in guiding users to select the scalar values for such uncertainty analysis. Moreover, analyzing and visualizing a large collection of ensemble isocontours for a selected scalar value has its own challenges. Interpreting the visualizations of such large collections of isocontours is also a difficult task. In this work, we propose a new information-theoretic approach towards addressing these issues. Using specific information measures that estimate the predictability and surprise of specific scalar values, we evaluate the overall uncertainty associated with all the scalar values in an ensemble system. This helps the scientist to understand the effects of uncertainty on different data features. To understand in finer details the contribution of individual members towards the uncertainty of the ensemble isocontours of a selected scalar value, we propose a conditional entropy based algorithm to quantify the individual contributions. This can help simplify analysis and visualization for systems with more members by identifying the members contributing the most towards overall uncertainty. We demonstrate the efficacy of our method by applying it on real-world datasets from material sciences, weather forecasting and ocean simulation experiments

    Visualization and Visual Analysis of Ensemble Data: A Survey

    No full text

    Identification of novel organic polar materials: A machine learning study with importance sampling

    No full text
    Recent advances in the synthesis of polar molecular materials have produced practical alternatives to ferroelectric ceramics, opening up exciting new avenues for their incorporation into modern electronic devices. However, in order to realize the full potential of polar polymer and molecular crystals for modern technological applications, it is paramount to assemble and evaluate all the available data for such compounds, identifying descriptors that could be associated with an emergence of ferroelectricity. In this paper, we utilized data-driven approaches to judiciously shortlist candidate materials from a wide chemical space that could possess ferroelectric functionalities. A machine learning study with importance sampling was employed to address the challenge of having a limited amount of available data on already-known organic ferroelectrics. Sets of molecular- and crystal-level descriptors were combined with a Random Forest Regression algorithm in order to predict the spontaneous polarization of the shortlisted compounds. First-principles simulations were performed to further validate the predictions obtained from the machine learning model

    HAiVA: Hybrid AI-assisted Visual Analysis Framework to Study the Effects of Cloud Properties on Climate Patterns

    Full text link
    Clouds have a significant impact on the Earth's climate system. They play a vital role in modulating Earth's radiation budget and driving regional changes in temperature and precipitation. This makes clouds ideal for climate intervention techniques like Marine Cloud Brightening (MCB) which refers to modification in cloud reflectivity, thereby cooling the surrounding region. However, to avoid unintended effects of MCB, we need a better understanding of the complex cloud to climate response function. Designing and testing such interventions scenarios with conventional Earth System Models is computationally expensive. Therefore, we propose a hybrid AI-assisted visual analysis framework to drive such scientific studies and facilitate interactive what-if investigation of different MCB intervention scenarios to assess their intended and unintended impacts on climate patterns. We work with a team of climate scientists to develop a suite of hybrid AI models emulating cloud-climate response function and design a tightly coupled frontend interactive visual analysis system to perform different MCB intervention experiments
    corecore