48 research outputs found

    The acute transcriptome response of the midbrain/diencephalon to injury in the adult mummichog (\u3cem\u3eFundulus heteroclitus\u3c/em\u3e)

    Get PDF
    Adult fish produce new cells throughout their central nervous system during the course of their lives and maintain a tremendous capacity to repair damaged neural tissue. Much of the focus on understanding brain repair and regeneration in adult fish has been directed at regions of the brainstem and forebrain; however, the mesencephalon (midbrain) and diencephalon have received little attention. We sought to examine differential gene expression in the midbrain/diencephalon in response to injury in the adult fish using RNA-seq. Using the mummichog (Fundulus heteroclitus), we administered a mechanical lesion to the midbrain/diencephalon and examined differentially expressed genes (DEGs) at an acute recovery time of 1 h post-injury. Comparisons of whole transcriptomes derived from isolated RNA of intact and injured midbrain/diencephalic tissue identified 404 DEGs with the vast majority being upregulated. Using qPCR, we validated the upregulation of DEGs pim-2-like, syndecan-4-like, and cd83. Based on genes both familiar and novel regarding the adult brain response to injury, these data provide an extensive molecular profile giving insight into a range of cellular processes involved in the injury response of a brain regenerative-capable vertebrate

    The acute transcriptome response of the midbrain/diencephalon to injury in the adult mummichog (\u3cem\u3eFundulus heteroclitus\u3c/em\u3e)

    Get PDF
    Adult fish produce new cells throughout their central nervous system during the course of their lives and maintain a tremendous capacity to repair damaged neural tissue. Much of the focus on understanding brain repair and regeneration in adult fish has been directed at regions of the brainstem and forebrain; however, the mesencephalon (midbrain) and diencephalon have received little attention. We sought to examine differential gene expression in the midbrain/diencephalon in response to injury in the adult fish using RNA-seq. Using the mummichog (Fundulus heteroclitus), we administered a mechanical lesion to the midbrain/diencephalon and examined differentially expressed genes (DEGs) at an acute recovery time of 1 h post-injury. Comparisons of whole transcriptomes derived from isolated RNA of intact and injured midbrain/diencephalic tissue identified 404 DEGs with the vast majority being upregulated. Using qPCR, we validated the upregulation of DEGs pim-2-like, syndecan-4-like, and cd83. Based on genes both familiar and novel regarding the adult brain response to injury, these data provide an extensive molecular profile giving insight into a range of cellular processes involved in the injury response of a brain regenerative-capable vertebrate

    The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome

    Get PDF
    Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer

    A Systems Biology Approach Reveals the Endocrine Disrupting Potential of Aflatoxin B1

    Get PDF
    Background Aflatoxin B1 (AFB1) a mycotoxin produced by Aspergillus flavus and A. parasiticus is a potent carcinogen and causative agent of hepatocellular carcinoma (HCC). It is a food contaminant which presents a major risk to human health. AFB1 contamination poses a significant economic burden, as 25% of the world's food crops need to be destroyed annually. The mechanism of action (MOA) of aflatoxins remains to be fully elucidated. Recent findings suggest that AFB1 mediated endocrine disruption may occur in the population of regions with high contamination, even without evidence of direct dietary intake. Objective An integrative systems biology approach was undertaken to decipher the estrogenic component of the mechanism of action (MOA) of AFB1. Methods Molecular Docking and Molecular dynamics simulations were performed to examine the binding affinity of AFB1 and its metabolite aflatoxin Q1 (AFQ1) with the Estrogen Receptors (ERs). Differential gene expression (DGE), gene ontology (GO) and pathway analyses were carried out on hepatic transcriptomic data generated from in vivo AFB1 exposures. In parallel exposures to the synthetic estrogen ethinylestradiol (EE2) were examined for overlapping effects. Finally, protein–protein interaction (PPI) network analysis assessed the involvement of estrogen responsive targets (ERTs) associated with aflatoxin exposure. Results The free energies of binding affinity and estimated equilibrium dissociation constants (KD) demonstrated that AFB1 and AFQ1 can interact with the ERα and ERβ. DGE and GO analyses highlighted overlap in the responses between AFB1 and EE2 treatments with the activation of key processes involved in estrogenic signaling. PPI network analyses after AFBI exposure revealed a dynamic response to AFB1 treatments with the solid involvement of ERTs in regulatory networks. Conclusions This study revealed molecular interactions between aflatoxins (AFB1, AFQ1) and ERs in addition to overlap in differentially expressed genes and biological processes following AFB1 and EE2 exposures. The estrogenic components at the core of the PPI networks suggest that ER-mediated signaling pathways are a major component in the MOA of aflatoxins

    A Systems Approach to Interrogate Gene Expression Patterns in African American Men Presenting with Clinically Localized Prostate Cancer

    Get PDF
    An emerging theory about racial differences in cancer risk and outcomes is that psychological and social stressors influence cellular stress responses; however, limited empirical data are available on racial differences in cellular stress responses among men who are at risk for adverse prostate cancer outcomes. In this study, we undertook a systems approach to examine molecular profiles and cellular stress responses in an important segment of African American (AA) and European American (EA) men: men undergoing prostate biopsy. We assessed the prostate transcriptome with a single biopsy core via high throughput RNA sequencing (RNA-Seq). Transcriptomic analyses uncovered impacted biological pathways including PI3K-Akt signaling pathway, Neuroactive ligand-receptor interaction pathway, and ECM-receptor interaction. Additionally, 187 genes mapping to the Gene Ontology (GO) terms RNA binding, structural constituent of ribosome, SRP-dependent co-translational protein targeting to membrane and the biological pathways, translation, L13a-mediated translational silencing of Ceruloplasmin expression were differentially expressed (DE) between EA and AA. This signature allowed separation of AA and EA patients, and AA patients with the most severe clinical characteristics. AA patients with elevated expression levels of this genomic signature presented with higher Gleason scores, a greater number of positive core biopsies, elevated dehydroepiandrosterone sulfate levels and serum vitamin D deficiency. Protein-protein interaction (PPI) network analysis revealed a high degree of connectivity between these 187 proteins

    A detailed Hapmap of the Sitosterolemia locus spanning 69 kb; differences between Caucasians and African-Americans

    Get PDF
    BACKGROUND: Sitosterolemia is an autosomal recessive disorder that maps to the sitosterolemia locus, STSL, on human chromosome 2p21. Two genes, ABCG5 and ABCG8, comprise the STSL and mutations in either cause sitosterolemia. ABCG5 and ABCG8 are thought to have evolved by gene duplication event and are arranged in a head-to-head configuration. We report here a detailed characterization of the STSL in Caucasian and African-American cohorts. METHODS: Caucasian and African-American DNA samples were genotypes for polymorphisms at the STSL locus and haplotype structures determined for this locus RESULTS: In the Caucasian population, 13 variant single nucleotide polymorphisms (SNPs) were identified and resulting in 24 different haplotypes, compared to 11 SNPs in African-Americans resulting in 40 haplotypes. Three polymorphisms in ABCG8 were unique to the Caucasian population (E238L, INT10-50 and G575R), whereas one variant (A259V) was unique to the African-American population. Allele frequencies of SNPs varied also between these populations. CONCLUSION: We confirmed that despite their close proximity to each other, significantly more variations are present in ABCG8 compared to ABCG5. Pairwise D' values showed wide ranges of variation, indicating some of the SNPs were in strong linkage disequilibrium (LD) and some were not. LD was more prevalent in Caucasians than in African-Americans, as would be expected. These data will be useful in analyzing the proposed role of STSL in processes ranging from responsiveness to cholesterol-lowering drugs to selective sterol absorption

    Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols

    Full text link

    De Novo Hepatic Transcriptome Assembly and Systems Level Analysis of Three Species of Dietary Fish, <i>Sardinops sagax</i>, <i>Scomber japonicus</i>, and <i>Pleuronichthys verticalis</i>

    Get PDF
    The monitoring of marine species as sentinels for ecosystem health has long been a valuable tool worldwide, providing insight into how both anthropogenic pollution and naturally occurring phenomena (i.e., harmful algal blooms) may lead to human and animal dietary concerns. The marine environments contain many contaminants of anthropogenic origin that have sufficient similarities to steroid and thyroid hormones, to potentially disrupt normal endocrine physiology in humans, fish, and other animals. An appropriate understanding of the effects of these endocrine disrupting chemicals (EDCs) on forage fish (e.g., sardine, anchovy, mackerel) can lead to significant insight into how these contaminants may affect local ecosystems in addition to their potential impacts on human health. With advancements in molecular tools (e.g., high-throughput sequencing, HTS), a genomics approach offers a robust toolkit to discover putative genetic biomarkers in fish exposed to these chemicals. However, the lack of available sequence information for non-model species has limited the development of these genomic toolkits. Using HTS and de novo assembly technology, the present study aimed to establish, for the first time for Sardinops sagax (Pacific sardine), Scomber japonicas (Pacific chub mackerel) and Pleuronichthys verticalis (hornyhead turbot), a de novo global transcriptome database of the liver, the primary organ involved in detoxification. The assembled transcriptomes provide a foundation for further downstream validation, comparative genomic analysis and biomarker development for future applications in ecotoxicogenomic studies, as well as environmental evaluation (e.g., climate change) and public health safety (e.g., dietary screening)

    SUMO Modification of the RNA-Binding Protein La Regulates Cell Proliferation and STAT3 Protein Stability

    Full text link
    The cancer-associated RNA-binding protein La is posttranslationally modified by phosphorylation and sumoylation. Sumoylation of La regulates not only the trafficking of La in neuronal axons but also its association with specific mRNAs. Depletion of La in various types of cancer cell lines impairs cell proliferation; however, the molecular mechanism whereby La supports cell proliferation is not clearly understood. In this study, we address the question of whether sumoylation of La contributes to cell proliferation of HEK293 cells. We show that HEK293 cells stably expressing green fluorescent protein (GFP)-tagged wild-type La (GFP-La-WT) grow faster than cells expressing a sumoylation-deficient mutant La (GFP-LaSD), suggesting a proproliferative function of La in HEK293 cells. Further, we found that STAT3 protein levels were reduced in GFP-LaSD cells due to an increase in STAT3 ubiquitination and that overexpression of STAT3 partially restored cell proliferation. Finally, we present RNA sequencing data from RNA immunoprecipitations (RIPs) and report that mRNAs associated with the cell cycle and ubiquitination are preferentially bound by GFP-LaWT and are less enriched in GFP-LaSD RIPs. Taken together, results of our study support a novel mechanism whereby sumoylation of La promotes cell proliferation by averting ubiquitination-mediated degradation of the STAT3 protein
    corecore